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A B S T R A C T

In protein refolding processes the scarce availability of online measurements hampers effective process
monitoring. In this work we developed a mechanistic soft-sensor for protein refolding based on online
intrinsic fluorescence measurements of tryptophan and tyrosine. In validation experiments using two model
proteins, lactate dehydrogenase (LDH) and galactose oxidase, the soft-sensor showed accurate estimates for
the prediction of the total sum of folding products (NRMSE < 6.1%) by calculating the changing rate of the
average emission wavelength. For refolding of the enzyme LDH it was possible to obtain separate predictions
of native protein and insoluble aggregates. The soft-sensor design was further extended by a model-based
observer approach using particle filtering to incorporate kinetic formulations as well as physical constraints.

The novel approach enabled the analysis of kinetic mechanisms during rapid reaction dynamics and can
therefore be seen as an enabler to achieve a better understanding of kinetic refolding mechanisms.
1. Introduction

In recent years the bioprocessing industry has been encouraged
by regulatory authorities to implement Quality by design (QbD) and
PAT guidelines into their manufacturing processes (FDA, 2004). Model-
based methods such as soft-sensors and digital twins have been iden-
tified as key enablers as they can enhance the information space,
guide decision making and optimize the process control in real-time
(Narayanan et al., 2020; Mears et al., 2017). Whereas many applica-
tions of advanced monitoring and control platforms have emerged in
upstream processing, the downstream, including the inclusion body (IB)
refolding process, lags significantly behind due to a lack of informative
real-time measurements leading to reduced process knowledge (Pauk
et al., 2021).

The vast majority of mechanistic refolding models in literature
describe the in vitro protein folding mechanism based on few repre-
sentative folding states including solubilized protein (𝑆), intermediate
conformations (𝐼), native protein (𝑁) and aggregates (𝐴) (Kiefhaber
et al., 1991; Dong et al., 2004b; Pan, 2015; Pauk et al., 2021; Igwe
et al., 2023a). Despite the almost infinite number of different pos-
sible intermediate conformations, this serves as an efficient model
simplification to represent the essential process dynamics in order to

∗ Corresponding author at: Competence Center CHASE GmbH, Hafenstraße 47-51, Linz, 4020, Austria.
E-mail address: donfabian.mueller@chasecenter.at (D.F. Müller).

calculate meaningful yields and reaction rates (Pan, 2015). In more
complex models further definitions of additional states are added for
more detailed descriptions of folding intermediates (Cleland et al.,
1992), the consideration of misfolded structures (𝑀) for disulfide-bond
containing proteins (Ryś et al., 2015), or to include states describing the
cofactor assembly (𝐼𝐶 or 𝑁𝐶) if required for the bioactivity of a target
protein (Cao and Li, 2011).

As the transition from the solubilized protein happens instanta-
neously after initialization of the refolding process, the transition rate
from solubilized protein to the intermediates as well as the state 𝑆
are often neglected (Dong et al., 2004a; de Bernardez Clark et al.,
1998). The kinetics are illustrated as a flow diagram in Fig. 1. However,
the reaction rates describing the transition between the other model
states such as the refolding rate 𝑘𝑁 or the aggregation rate 𝑘𝐴 are (i)
very complex, (ii) dependent on several factors such as the denaturant
concentration (de Bernardez Clark et al., 1998) the buffer components
and chemical additives (Dong et al., 2004a), and (iii) highly specific
depending on the protein structure itself (Igwe et al., 2023a). The
description of rates regarding cofactor interactions or the formation
of misfolded protein states is even a greater challenge and hardly
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Fig. 1. Reaction scheme of protein refolding processes. The solubilized protein in-
stantaneously reacts to folding intermediates (𝐼), followed by a competitive reaction
between aggregate (𝐴) formation and folding to native protein (𝑁) and 𝑁𝐶 in the
case of cofactor bindings. The reaction rates towards the protein state are denoted as
𝑘 (adapted from Kiefhaber et al. (1991)). The total protein concentration 𝑃 is the sum
of all folding states. 𝛿𝑁 and 𝛿𝐴 denote the modeled uncertainty on the reaction rates
which is later utilized by the state-estimator.

applicable in a generic manner across different proteins (Ryś et al.,
2015; Pauk et al., 2021).

In IB processing, in particular in protein refolding, information
on the underlying reaction are mainly based on off-line or at-line
measurements resulting in a significant time delay between sampling
and retrieval of the processed results (Pauk et al., 2021; Igwe et al.,
2023b) which poses challenges for real-time state estimation (Kager
et al., 2018). For the monitoring of refolding processes those meth-
ods are usually based on chromatographic separation, e.g. size exclu-
sion chromatography (SEC) or reversed-phase high-performance-liquid
chromatography (RP-HPLC) (Pizarro et al., 2009; Igwe et al., 2023a),
photometric assays (Humer et al., 2020) or spectroscopic techniques
(e.g. circular dichroism or fluorescence measurements) (Sharma et al.,
2022). Monitoring strategies solely based on off-line sampling often
do not have the sufficient resolution to capture fast changing process
dynamics (Wechselberger et al., 2013) as they are present in protein re-
folding. For a reliable system identification, informative measurements
have to be available in a sufficient frequency in order to represent
the fast mechanisms correctly. In signal processing, this principle is
known as the Shannon-theorem (Jerri, 1977). Furthermore, the off-line
analytics for quantification of protein conformations exhibit a notice-
able amount of measurement uncertainty that might lead to insufficient
signal quality (Igwe et al., 2023a).

Due to the aforementioned obstacles, soft-sensor algorithms pose
an attractive tool to predict fast refolding process dynamics in the
absence of sufficiently time-resolved measurements (Luttmann et al.,
2012; Mohd Ali et al., 2015). However, reports on their successful
implementation in protein refolding are scarce. Published attempts of
real-time state estimation strategies applied to refolding processes had
to deal with sparse and highly time-delayed measurements leading to
the need of recalculation methods in order to correct the state estimate
obtained in the past (Pauk et al., 2024).

Soft-sensors can be distinguished into direct calculation based al-
gorithms, which directly apply functions to the measured data, and
indirect model-based observers, that perform state-estimation by recur-
sive prediction and correction steps (Luttmann et al., 2012). As an
observer approach particle filtering (PF) is often applied, which is a
well-established tool for the estimation of nonlinear systems (Mohd Ali
et al., 2015; Müller et al., 2023). Informative online measurements are
crucial for the effective application of these techniques.

Recently, we showed the potential of online intrinsic fluorescence
measurements as an analytical tool for process development (Igwe
et al., 2024). Intrinsic fluorescence based on the amino acids trypto-
phan (Trp) and tyrosine (Tyr) is a prominent tool to observe structural
2

changes during protein folding pathways or ligand binding (Michaux
et al., 2016; Lakowicz, 2006; Hellmann and Schneider, 2019). Its uti-
lization has also been applied to IB processing chains especially to the
monitoring of refolding dynamics using offline sampling (Sharma et al.,
2022). Investigating the batch refolding of three different model en-
zymes we demonstrated that by using the changes in average emission
wavelength (𝐴𝐸𝑊 ) and the integral of the fluorescence intensity (𝐹 )
aluable insights could be gathered regarding the underlying process
ynamics posing a method of gathering sound process understanding.
owever, relative changes are often challenging to associate with
ctual process kinetics (Rüdt et al., 2017), thus we proposed the
ombination of online intrinsic Trp and Tyr measurements with mech-
nistic soft-sensing techniques for state estimation in protein refolding
rocesses.

Here, we derived two soft-sensor approaches, a direct soft-sensing
echnique and an indirect PF observer in order to predict the fold-
ng states from the changing rate of 𝐴𝐸𝑊 and the intensity 𝐹 . We
erformed experimental validation using the two model enzymes lac-
ate dehydrogenase (LDH) and galactose oxidase (GalOx). Under the
ssumption of functional relationships between (i) the changing rate
f 𝐴𝐸𝑊 and the total reaction rate ( 𝑑𝐼𝑑𝑡 ) and (ii) the intensity 𝐹

and the soluble protein concentration, the soft-sensors were applied
to separately predict the states 𝐼 , 𝑁 and 𝐴. The validity of both
assumptions are discussed with regard to the protein and process
characteristics. We compared the prediction performance of the two
soft-sensor approaches based on the normalized root mean square error
(NRMSE) as a measure of accuracy. Our contribution shows that the
resulting estimates pose a valuable data basis for a deeper analysis and
modeling of kinetic mechanisms that would not be possible with off-line
sampling strategies.

2. Material and methods

2.1. Processing of LDH IBs

Lactate dehydrogenase (LDH) from Lactobacillus plantarum was pro-
uced as IBs in Escherichia coli fed-batch fermentations, followed by
solation and washing as described by Igwe et al. (2023b). Isolated IBs
ere resuspended in solubilization buffer (0.15 M NaH2PO4, pH 6.0,
M guanidine hydrochloride (GuHCl)) and incubated under slight

gitation for 2 h at room temperature (RT). After removal of insoluble
ubstances by centrifugation (13,000 xg, 10 min, 4 °C) the solubilized
rotein was used for protein refolding in batch dilution approaches.
efolding was conducted using pre-cooled refolding buffer (0.15 M
aH2PO4, pH 6.0) at different protein concentrations for 2.5 h. The

reaction was carried out in a volume of 1.5 mL or 3.0 mL at 5 °C under
constant stirring.

2.2. Processing of GalOx IBs

Galactose oxidase originating from Fusarium graminearum was ex-
pressed as IBs in E. coli fed-batch cultivations as described by Igwe
et al. (2024). Following isolation and washing, the isolated IBs were
resuspended at a concentration of 100 g wet IB L−1 using solubilization
buffer: 0.1 M NaH2PO4, pH 7.0, 6 M GuHCl. Then, 25 mM of dithio-
threitol was added to initiate the rupture of disulfide bonds. After an
incubation period of 2 h at RT, the solubilized protein was separated
from insoluble substances by centrifugation (13,000 xg, 10 min, 4 °C).
Refolding was initiated by dilution of the solubilized protein into pre-
cooled refolding buffer (100 mM NaH2PO4, 5 mM cystamine, 1 M
L-arginine at pH 7.4). Then, copper(II) was added as the cofactor to
reach a concentration of 1 mM. The reaction was carried out in a

volume of 1.5 mL for 2.5 h under constant stirring.
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2.3. Online intrinsic fluorescence measurements

The measurement of intrinsic Trp and Tyr fluorescence was per-
formed utilizing an FP-8550 Spectrofluorometer (Jasco, Tokyo, Japan)
equipped with a multi-cuvette holder (Jasco, Tokyo, Japan) that al-
lowed for temperature control and stirring of the cuvettes. Refold-
ing procedures were carried out in 3-mL quartz fluorescence cuvettes
(Starna GmbH, Germany) with magnetic stirrers, using volumes of
either 1.5 mL or 3.0 mL. The cuvette holder temperature was set to 5 °C,
nd the stirring speed ranged between 500 and 800 rpm. Excitation
f the sample occurred at 280 nm, and the emission spectrum was
ecorded within the range of 310 nm to 370 nm (𝜆0 to 𝜆1). Photos and
urther information about the experimental setup are included in the
upplementary information (SI figure 1-4). The intensity integral 𝐹 was
rocessed as the integral of the peak signal 𝑓 from 𝜆0 to 𝜆1 as described
y Eq. (1).

(𝑡) = ∫

𝜆1

𝜆0
𝑓 (𝑡)𝑑𝜆 (1)

The average emission wavelength (𝐴𝐸𝑊 ) was calculated by the
um of 𝜆 ⋅ 𝑓 from 𝜆0 to 𝜆1 (Eq. (2)).

𝐸𝑊 (𝑡) =

∑𝜆1
𝑖=𝜆0

(𝜆𝑖 ⋅ 𝑓𝑖(𝑡))
∑

𝑓𝑖(𝑡)
(2)

The two extracted variables 𝐹 and 𝐴𝐸𝑊 were used to feed the
soft-sensor.

2.4. Offline measurements of protein states

For both proteins (LDH and GalOx), the total soluble protein con-
centration and aggregate concentration were measured using different
analytical tools. The definition as well as the calculation of protein
states and their respective propagated state errors was conducted as
described by Igwe et al. (2023a). The soluble protein concentration
was measured by RP-HPLC using a Polyphenyl BioResolve-RP-mAb
2.7 μm 3.0 x 100 mm column (Waters Corporation, Milford, USA) on
an UltiMate 3000 HPLC system (Thermo Fisher Scientific, Waltham,
MA, United States of America). Bovine serum albumin at concentrations
between 0.05–2.0 g L−1 was used to obtain a calibration curve (Kopp
et al., 2020). The aggregated fraction was calculated based on the
difference between soluble and insoluble protein concentration.

For the LDH the native protein concentration was determined via
enzymatic activity measurements and correlations to SEC measure-
ments for absolute values using LDH from porcine muscle (Cas No.:
9001-60-9) at concentrations between 0.05–1.0 g L−1 as reference
standards. SEC was measured using an UltiMate 3000 HPLC system
(Thermo Fisher Scientific, Waltham, MA, United States of America)
and a BEH 200 A SEC 1.7 μm, 4.6 x 300 mm, 3.5 μm column (Waters
Corporation, Milford, USA). Separation was carried out using isocratic
elution (80 mM KH2PO4, pH 6.8, 250 mM KCl) for 18 minutes at a
flow rate of 0.5 mL min−1 and a sample injection volume of 2 μL. The
column oven was controlled at 25 °C and the absorbance was monitored
at a wavelength of 214 nm and 280 nm.

The enzymatic activity was determined using a photometric as-
say measured in a TECAN Spark® microplate reader (Tecan Trading
AG, Männedorf, Switzerland). The temperature was set to 30 °C and
bsorbance at a wavelength of 340 nm was recorded for 3 minutes.
he sample was diluted in the reaction buffer (100 mM NaH2PO4,

0.425 mM nicotinamide adenine dinucleotide (NADH), 0.45 mM pyru-
vate) at a ratio of 30 % (v/v). Calculation was conducted using the
extinction coefficient of NADH of 6.22 mM−1 cm−1 (Vanderlinde, 1985)
as shown in Eq. (3).

𝑣𝐴𝑐 =
𝑉𝑡 ⋅

𝛥𝐴
𝛥𝑡 (3)
3

𝑉𝑠 ⋅ 𝑙 ⋅ 𝜖 w
Table 1
Process parameters for refolding experiments of LDH and GalOx: initial protein concen-
tration (𝑃0) and final protein concentration (𝑃𝑓𝑖𝑛𝑎𝑙) in g L−1, denaturant concentration
(𝐷) in mol L−1, initial fluorescence intensity (𝐹0) in a.u. and the total shift in AEW
(𝛥𝐴𝐸𝑊 ) in nm.

Process 𝑃0 𝑃𝑓𝑖𝑛𝑎𝑙 𝐷 𝐹0 𝛥𝐴𝐸𝑊
ID [g L−1] [g L−1] [M] [a.u.] [nm]

LDH 1 0.15 0.45 0.2 2.4E5 0.67
LDH 2 0.3 0.44 0.32 4.2E5 0.82
LDH 3 0.05 0.26 0.13 1.0E5 0.62
LDH 4 0.57 0.57 0.10 5.3E5 0.97
LDH 5 0.57 0.57 0.10 5.6E5 0.67
LDH 6 0.20 0.20 0.10 2.8E5 0.83
LDH 7 0.21 0.21 0.10 2.8E5 0.93
LDH 8 0.21 0.21 0.10 2.9E5 0.75
LDH 9 0.21 0.21 0.10 2.8E5 0.69

GalOx 1 0.22 0.22 0.12 2.1E5 0.47
GalOx 2 0.22 0.22 0.12 2.7E5 0.85
GalOx 3 0.36 0.36 0.20 2.6E5 1.57
GalOx 4 0.36 0.36 0.20 3.0E5 1.70
GalOx 5 1.09 1.09 0.60 3.7E5 4.38
GalOx 6 1.09 1.09 0.60 3.7E5 4.08

The calculation is based on the time-dependent change in ab-
sorbance ( 𝛥𝐴𝛥𝑡 ), where 𝑉𝑡 represents the total volume of the reaction
mixture in mL, 𝑉𝑠 denotes the volume of the enzyme solution in
mL, 𝑙 signifies the length of the optical path in cm, and 𝜖 represents
the extinction coefficient in mM−1 cm−1. A single Unit of volumetric
activity (𝑣𝐴𝑐) is defined as the necessary enzyme for the conversion of
1 μmol of NADH per minute.

2.5. Refolding data-sets for experimental validation

For the experimental validation we conducted a set of experiments
with the two model proteins LDH and GalOx. The parameters for the
considered experiments are listed in Table 1. The processes LDH 1-3
were conducted in a pulse-based batch processing mode, where the
solubilized protein was incrementally added over time such that the
total protein concentration (𝑃 ) was increased to a final concentration
of 𝑃𝑓𝑖𝑛𝑎𝑙. The other processes were conducted in batch dilution mode
and therefore contained constant 𝑃 over time.

3. Models and soft-sensor design

3.1. Mechanistic reference model

As the reference model for protein refolding of LDH we consider the
following nonlinear state space system as proposed by Kiefhaber et al.
(1991) based on the concentration balances
𝑑𝐼(𝑡)
𝑑𝑡

= −𝑘𝑁 ⋅ 𝐼(𝑡) − 𝑘𝐴 ⋅ 𝐼(𝑡)𝑛 = −𝑘𝐼 ⋅ 𝐼(𝑡) (4)

𝑑𝑁(𝑡)
𝑑𝑡

= 𝑘𝑁 ⋅ 𝐼(𝑡) (5)

𝑑𝐴(𝑡)
𝑑𝑡

= 𝑘𝐴 ⋅ 𝐼(𝑡)𝑛 (6)

and algebraic equations for the definition of the reaction kinetics

𝑘𝑁 (𝑡) = 𝑎𝑁 ⋅ (1 +𝐷)𝑏𝑁 + 𝛿𝑁 (𝑡) (7)

𝐴(𝑡) = 𝑎𝐴 ⋅ (1 +𝐷)𝑏𝐴 + 𝛿𝐴(𝑡) (8)
here:
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Fig. 2. Overview of the direct soft-sensor principle to estimate folding states 𝐼 , 𝑁 and 𝐴 from intrinsic fluorescence measurements. In this study the data was obtained from a
thermostated and stirred cuvette (SI figure 1-2). The concept, however, can be applied to larger reaction vessels.
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𝐼(𝑡) = intermediates in g L−1

𝑁(𝑡) = native protein in g L−1

𝐴(𝑡) = aggregates in g L−1

𝑘𝑁 = specific refolding rate in h−1

𝑘𝐴 = specific aggregation rate in h−1

𝑘𝐼 = specific total reaction rate in h−1

𝛿𝑁 (𝑡) = uncertainty for 𝑘𝑁 in h−1

𝛿𝐴(𝑡) = uncertainty for 𝑘𝐴 in h−1

𝐷 = denaturant concentration in g L−1

𝑛 = order of aggregation

nd 𝑎𝑁 , 𝑎𝐴, 𝑏𝑁 , and 𝑏𝐴 being the kinetic model parameters. Identified
inetic parameter values were taken from Pauk et al. (2024) as initial
uesses to perform open-loop model simulations for LDH and GalOx
efolding. On the basis of the differential Eq. (4) an explicit formula
or 𝑘𝐼 can be formulated as follows:

𝐼 = 𝑘𝑁 − 𝐼 ⋅ 𝑘𝐴 ⋅ 𝐼𝑛 (9)

For state estimation using the model-based PF observer described in
Section 3.3, 𝛿𝑁 and 𝛿𝐴 were augmented into the state vector for the
estimation of reaction rates.

In contrast to the other time dependent states, 𝐷 was defined as a
time invariant model parameter since it is assumed to be constant in a
batch process. For the simulation of the pulsing experiments (LDH 1-3)
however, 𝐷 and 𝐼 were altered through a discrete callback function
when pulses are applied. The total protein concentration 𝑃 is the sum
of all different folding configurations of the protein. In this case:

𝑃 (𝑡) = 𝐼(𝑡) +𝑁(𝑡) + 𝐴(𝑡) (10)

For the GalOx refolding experiments we extended the model to
include the cofactor binding mechanism. Therefore, another state equa-
tion was introduced describing the reaction from correctly folded pro-
tein (𝑁) to the protein cofactor complex (𝑁𝐶)
𝑑𝑁𝐶(𝑡)

𝑑𝑡
= 𝑘𝑁𝐶 ⋅𝑁(𝑡) (11)

nd Eq. (5) has to be extended to
𝑑𝑁(𝑡)
𝑑𝑡

= 𝑘𝑁 ⋅ 𝐼(𝑡) − 𝑘𝑁𝐶 ⋅𝑁(𝑡) (12)

o respect the conservation laws.

.2. Soft-sensor principle 1: Direct calculation

A basic scheme of the direct soft-sensor operating principle is shown
n Fig. 2. In general, the direct soft-sensor algorithm is based on calcu-
ations of the average emission wavelength (𝐴𝐸𝑊 ) and the integral of
luorescence intensity (𝐹 ).

The soft-sensor builds up on the following assumptions.

1. The total reaction rate ( 𝑑𝐼𝑑𝑡 , Eq. (4)) is functionally correlated to
the changing rate of AEW.

2. The concentration of soluble proteins (𝐼 + 𝑁) is proportional
to the intensity (𝐹 , Eq. (1)). When proteins aggregate they
precipitate out of solution causing 𝐹 to decrease.
4

3. The initial concentrations at 𝑡 = 0 for 𝑁 and 𝐴 are 0 and the sum
of all folding states, the total protein concentration (𝑃 , Eq. (10))
is known.

f the first assumption holds, the pace of the folding reaction can be
btained by numerically calculating the time derivative of AEW. In
his work we used the Savitzky–Golay differentiation filter (Savitzky and
olay, 1964) with a window size of 15 and an order of 5 as well
s locally weighted scatterplot smoothing (Loess) (Cleveland and Devlin,
988). After obtaining the value for 𝛽1 by linear regression of the
hanging rate of average emission wavelength ( 𝑑𝐴𝐸𝑊

𝑑𝑡 ) to the total
reaction rate ( 𝑑𝐼𝑑𝑡 ), the obtained function can be integrated to solve for
the state 𝐼(𝑡).

𝐼(𝑡) = ∫

𝑡

𝑡0
(𝛽1 ⋅

𝑑𝐴𝐸𝑊
𝑑𝑡

)𝑑𝑡 = ∫

𝑡

𝑡0

𝑑𝐼
𝑑𝑡

𝑑𝑡 (13)

The value of the correlation coefficient 𝛽1 was identified to be 𝛽1 =
0.174 ± 0.025 for the LDH and the same correlation could be used for the
GalOx (SI figure 5). If the second and third assumption hold, we can
additionally describe the intensity integral 𝐹 as a function of soluble
protein (𝐼 +𝑁) by

𝐼(𝑡) +𝑁(𝑡) = 𝛽2 ⋅ 𝐹 (𝑡) =
𝑃0
𝐹0

⋅ 𝐹 (𝑡) (14)

ince the initial concentrations of 𝑁 and 𝐴 are 0 the soluble protein
oncentration is equal to 𝐼 , which is the total protein concentration at
he start of the process (𝑃0). Therefore, the initial intensity 𝐹0 can be
orrelated to 𝑃0 by

2 =
𝑃0
𝐹0

(15)

which allows Eq. (14) to be solved for the sum of 𝐼 and 𝑁 . Finally,
e can calculate all three state variables 𝐼 , 𝑁 and 𝐴 by solving the

inear equation system composed of Eqs. (10), (13) and (14), compactly
xpressed in matrix form as

1 1 1
1 1 0
1 0 0

⎤

⎥

⎥

⎦

⋅
⎡

⎢

⎢

⎣

𝐼
𝑁
𝐴

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑃
𝛽2 ⋅ 𝐹

∫ 𝑡
𝑡0(𝛽1 ⋅

𝑑𝐴𝐸𝑊
𝑑𝑡 )𝑑𝑡

⎤

⎥

⎥

⎦

. (16)

In summary, the time-invariant parameters of the direct soft-sensor
formulation are

1. the initial protein concentration (𝑃0)
2. the correlation coefficient (𝛽1)

and the input variables of the soft-sensor are 𝐹 (𝑡) (Eq. (1)) and 𝐴𝐸𝑊 (𝑡)
(Eq. (2)). The method does not rely on kinetic model parameters and
is therefore easy to transfer between different proteins.

3.3. Soft-sensor principle 2: Model-based particle filter

The second option to calculate unknown state variables is an indirect
estimation through a model-based observer. To estimate the model
states from the intrinsic fluorescence measurements, we applied a

particle filter observer (PF). The PF requires the definition of a process
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model and was combined with the mechanistic model defined in Sec-
tion 3.1. The algorithm employs a set of particles, each representing a
potential state hypothesis, and assigns weights to these particles based
on their likelihood given observed measurements. After initialization, it
consists of a recursive iteration of prediction, correction and resampling
steps. In the prediction step, the process model is predicted one time
step into the future. After that, the correction step is performed, where
the true measurements ( 𝑑𝐴𝐸𝑊

𝑑𝑡 and 𝐹 ) are compared with the simulated
easurements from the prediction step. Based on this deviation the
odel states are corrected which enables state estimation. The imple-
entation of the PF was adapted from Müller et al. (2023), where the

lgorithm is presented in more detail.
According to the model (Section 3.1) the augmented state vector

ncluded 5 states and was defined as

= [𝐼,𝑁,𝑁𝐶,𝐴, 𝛿𝑁 , 𝛿𝐴]𝑇 . (17)

he condensed form of the nonlinear state-space equation can be
ormulated as

𝑑
𝑑𝑡

𝑥 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑑𝐼∕𝑑𝑡
𝑑𝑁∕𝑑𝑡
𝑑𝑁𝐶∕𝑑𝑡
𝑑𝐴∕𝑑𝑡
𝛿𝑁
𝛿𝐴

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑘𝑁 ⋅ 𝐼(𝑡) − 𝑘𝐴 ⋅ 𝐼(𝑡)𝑛

𝑘𝑁 ⋅ 𝐼(𝑡) − 𝑘𝑁𝐶 ⋅𝑁(𝑡)
𝑘𝑁𝐶 ⋅𝑁(𝑡)
𝑘𝐴 ⋅ 𝐼(𝑡)𝑛

0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

The output function (Eq. (19)) to calculate the two measured out-
puts from the model states was defined by rearranging the direct
calculation formulas Eqs. (13) and (14) containing the assumptions
about the system defined in Section 3.2.

𝑦 =
[

𝛽2 ⋅ (𝐼(𝑡) +𝑁(𝑡))
𝛽1 ⋅ (−𝑘𝑁 ⋅ 𝐼(𝑡) − 𝑘𝐴 ⋅ 𝐼(𝑡)𝑛)

]

(19)

Here, the first entry corresponds to the fluorescence intensity integral
𝐹 and the second entry corresponds to 𝐴𝐸𝑊 . In principle, the state-
estimation works by repeated iterations of predicting the future system
state using Eq. (18) and subsequently correcting the state prediction by
the two measurements using Eq. (19).

The PF was configured as follows. For initialization, 500 particles
were initialized using a Gaussian initial state distribution with a mean
of

𝜇(𝑥0) = [𝑃0, 0, 0, 0, 0, 0]𝑇 (20)

and a covariance matrix

𝑐𝑜𝑣(𝑥0) = 10−5 ⋅ 𝜇(𝑥0) (21)

assuming that the initial protein concentration is well known with a
relative uncertainty of 10−5 and solely in the form of intermediates. At
the start of the process, solubilized protein is added to the refolding
buffer, where it immediately transitions into the intermediate folding
state 𝐼 , since the denaturant GuHCl is diluted. Therefore, the initial
mass of 𝐼 is entirely defined by the initial protein concentration 𝑃0. All
other folding states (𝑁 , 𝑁𝐶, 𝐴) as well as the uncertainty values on the
folding rates (𝛿𝑁 , 𝛿𝐴) are assumed to be 0 at the start of the process.

Gaussian distributions were also used for additive state transition
noise with a covariance matrix of

𝑐𝑜𝑣(𝑥) = 𝑑𝑖𝑎𝑔[0, 0, 0, 0, 0.002, 0.002] (22)

and for the measurement noise with a covariance matrix of

𝑐𝑜𝑣(𝑦) = 𝑑𝑖𝑎𝑔[3 ⋅ 104, 0.001]. (23)

State transition noise was only defined for the propagation of 𝛿1 and
𝛿2 (Eq. (22)) in order to restrict the filter to the estimation of only the
reaction rate kinetics. Although there is no direct additive noise defined
for the concentration states (𝐼 , 𝑁 , 𝐴, 𝑁𝐶), the adaptations of 𝑘𝑁 and
𝑘𝐴 propagate through the model and in turn influence the dynamics
of the concentrations. Since the measurements 𝐹 and 𝑑𝐴𝐸𝑊

𝑑𝑡 exhibit
varying orders of magnitudes, the measurement noise had to be tuned
accordingly (Eq. (23)).
5

Table 2
Mean NRMSE values compared to the measured AEW for each applied methods of
numerical differentiation after reintegration of the derivative.

Differentiation Mean error Mean error
method for LDH for GalOx

Finite differences 1.32% 0.78%
Savitzky–Golay 1.11% 1.03%
Loess 1.31% 3.15%

3.4. NRMSE calculation as soft-sensor performance measure

As a measure of soft-sensor and open-loop model performance the
normalized root mean square error (NRMSE) was calculated using nor-
malization towards the maximum value of the respective measurement
vector 𝑦𝑝 (Eq. (24)).

NRMSE(𝑥𝑝) =

√

1
𝑑
∑𝑑

𝑘=1(𝑦𝑝,𝑘 − 𝑥𝑝,𝑘)2

max(𝑦𝑝)
(24)

where:

𝑑 total number of measured points
𝑘 iterator to sum over all measured points
𝑥𝑝 vector of predicted concentrations
𝑦𝑝 vector of measured concentrations
𝑥𝑝,𝑘 predicted concentration at time k
𝑦𝑝,𝑘 measured concentration at time k

.5. Software implementation

All scientific computations were conducted in Julia version 1.9. The
echanistic models were implemented using ModelingToolkit.jl (Ma

t al., 2022) and the numerical simulations of the resulting differential
quation systems were conducted using DifferentialEquations.jl (Rack-
uckas and Nie, 2017). Nonlinear uncertainty propagation of the soft-
ensor estimation was performed using MonteCarloMeasurements.jl
Carlson, 2020) and particle filtering was carried out using
owLevelParticleFilters.jl. The developed algorithms, the code for data
nalysis and the raw data used in this paper is publicly available under
he following repository: https://github.com/dfabianus/FLUMO.jl.git.

. Results and discussion

.1. Calculation of the total reaction rate using the AEW

In order to obtain the total folding rate of the reactive interme-
iate species (𝐼) we assumed a functional relationship between the
hanging rate of AEW and the reaction rate. In Fig. 3(a) the numer-
cal differentiation of AEW is illustrated for the processes LDH 1-3
nd in Fig. 3(b) for the processes GalOx 2, GalOx 3 and GalOx 5,
espectively, which were executed with varying amounts of denaturant
GuHCl). The numerical derivative in nmh−1 was calculated using a

finite-difference approximation. Since numerical differentiation is a
noise amplifying operation (Bayer et al., 2020), the derivatives ob-
tained by finite-difference approximation show a higher noise than the
raw AEW data (Fig. 3(a)).

Therefore, we applied two methods for derivative smoothing, (i) the
Savitzky-Golay differentiation filter (Savitzky and Golay, 1964) and (ii)
the Loess regression (Cleveland and Devlin, 1988), which significantly
reduced the noise levels. In order to check for the correctness of the
approach we re-integrated the obtained derivatives for all considered
experiments ( Table 1) by means of a cumulative sum, determined the
NRMSE with respect to the raw AEW data and calculated the mean over
all experiments. The results are displayed in Table 2.

For the LDH refolding they show the highest error for the finite-
difference approximation (1.32%) and the lowest error for the Savitzky–
Golay differentiation filter (1.11%). Although, for GalOx refolding the

https://github.com/SciML/ModelingToolkit.jl
https://github.com/SciML/DifferentialEquations.jl
https://github.com/baggepinnen/MonteCarloMeasurements.jl
https://github.com/baggepinnen/LowLevelParticleFilters.jl
https://github.com/dfabianus/FLUMO.jl.git
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raw finite-difference approximation were the lowest (0.78%) for better
comparability we also used the derivatives obtained by the Savitzky–

olay differentiation filter for further processing of the GalOx data and
alculation of folding reaction rates for all experiments.

.2. Soft-sensing of the total folding reaction

In this section we analyze the prediction accuracy of the soft-sensor
ased on direct calculation derived in Section 3.2 (the direct soft-
ensor) as well as the prediction accuracy of the model-based particle
ilter derived in Section 3.3 (the PF observer) and compared them to the
6

pen-loop reference model and to the measured data of folding states. v
Fig. 4(a) shows the time-resolved estimates for 𝐼(𝑡) and the sum of
(𝑡) and 𝐴(𝑡) that is representing the total sum of folding products

or the LDH refolding processes 4-9. The results show that for the
rocesses with single end-point measurements (LDH 4-6) the direct
oft-sensor as well as the PF observer estimates (𝑁 + 𝐴) predicted
he final state measurement better than the open-loop model with
he exception of LDH 6, where the final state was more accurately
redicted by the open-loop model. However, in all processes with time-
esolved measurements (LDH 7-9) the direct soft-sensor and the PF
bserver followed the state trajectories more accurately compared to
he prediction of the open-loop model. An overview of the NRMSE

alues is displayed in Table 3.



Computers and Chemical Engineering 187 (2024) 108734C.L. Igwe et al.
Fig. 4. Soft-sensing of the total folding reaction for (a) the LDH folding products (N+A) and (b) the GalOx folding products (NC+N+A). The ribbons display 1𝜎 standard deviation
obtained by nonlinear uncertainty propagation as a result of the correlation function uncertainty shown in SI figure 5.
i
P

For the GalOx refolding processes, Fig. 4(b) shows the estimates
for 𝐼(𝑡) and the sum of 𝐴(𝑡), 𝑁(𝑡) and 𝑁𝐶(𝑡), which represents the
native protein cofactor complex that is being formed after the addition
of copper as the cofactor (Whittaker, 2005), here indicated by the
vertical dashed line. The end-point measurements mostly show accurate
predictions by the direct soft-sensor (NRMSE = 6.1%) and the PF
observer (NRMSE = 5.3%).

Overall, both soft-sensor algorithms show good prediction accuracy
for the total folding dynamics of both LDH refolding (NRMSE < 6.1%)
and GalOx refolding (NRMSE < 8.7%).
7

T

However, as can be seen in Fig. 4 the direct soft-sensor estimate for
𝐼 can reach concentrations below 0 gL−1 for the LDH and the GalOx,
which is unfeasible. This constraint is not respected by the direct soft-
sensor since the turnover rate 𝑑𝐼

𝑑𝑡 is based on a direct static relationship
to the derivative of AEW (Eq. (13)) and not described by kinetics as
derived for the open-loop model (Eq. (4)).

Comparing the direct soft-sensor with the PF observer we see that
the PF observer estimates for 𝐼 do not reach values below 0 gL−1, since
n contrast to the direct soft-sensing approach, the kinetic model of the
F observer prevents the state estimate from reaching unfeasible states.

he results of Table 3 also show that the PF observer in general exhibit



Computers and Chemical Engineering 187 (2024) 108734C.L. Igwe et al.
Fig. 5. Soft-sensing of separate folding states in LDH refolding processes. Separating 𝑁 +𝐴 into 𝑁 and 𝐴 of LDH 4-9 by incorporation of the fluorescence intensity (𝐹 ). Compare
to Fig. 4(a) for the sum of 𝑁 and 𝐴.
Fig. 6. Intensity of process LDH 7 declines over time which is assumed to be
predominantly due to the formation of insoluble aggregates. LDH 7 was taken for
illustration. The effect was observed in the other LDH processes as well.

slightly lower NRMSE values than the direct soft-sensor which could be
due to the prevention of unfeasible states by the additional constraints.
This extension however comes with an increased complexity since
additional kinetic model parameters have to be considered to define
the PF observer, which has to be weighed up against the gain of
accuracy. The direct soft-sensor in contrast does not rely on any kinetic
parameters and therefore requires less prior knowledge of the system
making it more transferable to other proteins.

4.3. Soft-sensing of separate folding states

Under the assumption that the measured fluorescence intensity (𝐹 )
is proportional to the soluble protein concentration, the total folding
products (𝑁 + 𝐴) can be further differentiated into native protein (𝑁)
and insoluble aggregates (𝐴) as stated in Section 3.2.

Fig. 6 shows, that during refolding of LDH, 𝐹 tends to decrease over
time which is assumed to be partially due to the formation of aggregates
that are precipitating out of solution and thus are only partially con-
tributing to the fluorescence signal (Igwe et al., 2024). To obtain the
correlation between fluorescence signal and protein concentration (𝛽 )
8

2

the known protein concentration was divided by the fluorescence at
the initial time point 𝑡0 (Eq. (15)) where 100% of the added solubilized
protein is assumed to be dissolved. The soluble fraction of the protein
concentration (𝐼 +𝑁) is then calculated by Eq. (14). By incorporating
this equation into the soft-sensor equation system, it can be solved for
all three states 𝐼 , 𝑁 and 𝐴 by only providing the initial total protein
concentration 𝑃0, the correlation coefficient between 𝑑𝐴𝐸𝑊

𝑑𝑡 and 𝑑𝐼
𝑑𝑡 (𝛽1)

and the fluorescence measurement signals 𝐹 (𝑡) and 𝐴𝐸𝑊 (𝑡).
Fig. 5 shows the separated estimation of 𝑁 and 𝐴 for the LDH

processes 4–9 in contrast to the total estimation 𝑁 + 𝐴 as shown
in Fig. 4(a). Although LDH 4-6 show a relatively high uncertainty
in the direct soft-sensor estimations for 𝑁 and 𝐴 the time-resolved
measurements of LDH 7-9 are still accurately captured as can be seen in
Fig. 5 leading to an overall NRMSE for state 𝑁 of 8.7% and for state A
of 4.5% ( Table 3). The PF observer overall shows a similar prediction
accuracy compared to the direct soft-sensor but prevents state 𝐼 to
fall below 0 gL−1 (Fig. 5). The NRMSE values for the PF observer are
comparable to the direct soft-sensor ( Table 3).

The result shows that the hypothesis of 𝐹 being functionally cor-
related to soluble protein 𝐼 + 𝑁 can indeed be used in LDH refolding
processes to distinguish the prediction of 𝑁 +𝐴 into the single folding
states. However, the high prediction error in some of the experiments
(LDH 4-7) also indicate that there might be more complex effects
which influence the fluorescence intensity and thus deteriorate the state
estimation.

Fig. 7 shows that it is not possible to directly transfer this as-
sumption to other refolding reactions for proteins including cofactors
such as shown here for the GalOx. After the addition of the cofactor,
the intensity suddenly drops, which in turn leads to a jump of the
estimates to 0.3 gL−1 for 𝐴 and to below 0 gL−1 for 𝑁𝐶 + 𝑁 . Here,
the above mentioned hypothesis does not hold, which is probably due
to additional quenching effects that are induced by the addition of
copper into the solution leading to infeasible solutions for 𝑁𝐶 + 𝑁
and 𝐴 (Weiner et al., 1977). In contrast to LDH refolding (Fig. 6)
the intensity is not predominantly influenced by aggregate formation
anymore but mainly affected by quenching (Fig. 7). The same effect was
observed for all other experiments of GalOx refolding that are depicted
in Table 1.
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Fig. 7. Soft-sensing of separate folding states in GalOx refolding processes. Separating 𝑁𝐶 +𝑁 +𝐴 into 𝑁𝐶 +𝑁 and 𝐴 by incorporation of the intrinsic fluorescence intensity (A)
is exemplarily shown for GalOx 4 which leads to infeasible results probably due to quenching effects induced by the cofactor addition (B).
r
P
t
o
f

Table 3
NRMSE values of the soft-sensor and open-loop model estimates. Mean and standard
deviation of NRMSE are specified for LDH and GalOx experiments respectively.

LDH: NRMSE values in %

State Open-loop Direct PF
model soft-sensor observer

N+A 12% ± 6.1% 6.1% ± 3.9% 5.3% ± 4.6%
N 18% ± 6.6% 8.7% ± 6.4% 8.2% ± 6.4%
A 15% ± 5.9% 4.5% ± 2.2% 4.7% ± 2.8%

GalOx: NRMSE values in %

State Open-loop Direct PF
model soft-sensor observer

NC+N+A 83% ± 24% 12% ± 9.2% 8.7% ± 7.3%
NC+N n.a.a n.a. n.a.
A n.a. n.a. n.a.

a For the GalOx there is no reliable estimation data available for separate prediction
of NC+N and A.

These quenching effects would need to be correctly modeled to use
the intensity for soft-sensing of cofactor induced refolding processes
such as the GalOx refolding. This, however, is not a trivial task since the
aggregate formation and quenching effects both influence the intensity
in a similar way leading to an underdetermination of the solution
space. It is practically unfeasible to predict the amount of fluorescence
quenching induced by the cofactor a priori. Further experiments would
eed to be conducted to identify the functional relationship between
luorescence intensity (𝐹 ) and cofactor concentration using varying
oncentrations of copper. This, in turn, could be incorporated in the
oft-sensor calculations in order to decouple the effects of aggregation
nd quenching. This, however, was outside the scope of this work.
n addition, it must be assumed that the influence on the intensity
hift could also have other origins and thus is even more compex as
reviously assumed.

.4. Kinetic knowledge based on soft-sensor estimates

As the results of Fig. 4 showed, the open-loop reference model with
inetic parameters from literature does not provide a good prediction
f the total measured reaction dynamics. Even though the soft-sensors
eveloped in this work are not perfectly accurate, especially when
onsidering the separated state estimation of 𝑁 and 𝐴 (Fig. 5), it
enerally represents the process dynamics much better than the open-
oop reference model (NRMSE values in Table 3). In this respect, we
ight use the soft-sensor estimates as a time-resolved measurement

ignal in order to gain more insights into the kinetic mechanisms of
he refolding process. However, it has to be noted that the prediction
9

power of such relationships is highly dependent on the accuracy of the
soft-sensor estimates and thus might be prone to errors in cases where
the soft-sensor does not deliver good estimates. Still, the soft-sensor
estimates provide a valuable data basis for the analysis of major process
dynamics.

In this section we specifically consider the effect of the denaturant
concentration (𝐷) on the specific total reaction rate (𝑘𝐼 ) in the GalOx
efolding process. As proposed in literature (Tsumoto et al., 2003;
an, 2015) we assumed that the folding reaction is mainly driven by
he amount of reactive intermediates 𝐼 , which is in turn depending
n the concentration of denaturing agent. Thus, we calculated 𝑘𝐼 (𝑡)
or each GalOx process by dividing the soft-sensor estimates for 𝑑𝐼

𝑑𝑡
by the respective estimates for 𝐼(𝑡). Fig. 8 shows 𝑘𝐼 before and after
the addition of copper in a form of violin plots and box plots. Even
though the specific rates exhibit an increased amount of noise, it can
be noticed from the data that a low amount of GuHCl (0.12M) leads to
a stronger total reaction whereas a higher amount of GuHCl leads to a
weaker reaction (0.6M). This trend is observed prior to the addition
of copper as well as afterwards, whereas the absolute levels of 𝑘𝐼
significantly differ depending on the presence of copper. After copper
addition 𝑘𝐼 exhibits around 10–15 times higher values than prior to
the addition, which is convincing since copper is required as cofactor
for the formation of a catalytically active GalOx. These effects can also
be seen in the raw AEW data shown in Fig. 3, where the time span
in which the AEW signal reaches a steady state after copper addition is
negatively correlated to the concentration of GuHCl suggesting a strong
fast reaction in case of low GuHCl concentrations (0.12 M) and a milder
but longer lasting reaction in case of higher GuHCl concentrations
(0.6 M).

Finally, it has to be noted that this kind of analysis of fast process
dynamics would hardly be possible without the time-resolved online
estimates as provided by the presented soft-sensors. Since the reaction
is very fast after copper addition compared to upstream processing (𝑘𝐼
up to 15 h−1 as shown in Fig. 8 vs. 𝑞𝑆𝑚𝑎𝑥 ≈ 1.2 h−1 in cultivations of
Escherichia coli (Neubauer et al., 2003)), samples would have to be
required in a relatively high frequency (probably under 10 min) in
order to represent the fast reaction after copper addition. Given the
relatively high workload of offline sampling and analytics in protein
refolding processes, this would not be feasible especially when con-
sidering the low signal quality of offline analytics obtained in short
sampling intervals (Igwe et al., 2023a). Therefore, the proposed soft-
sensor can be seen as an enabler for the identification and analysis of
fast reaction dynamics in protein refolding.

5. Conclusion

Two soft-sensing approaches for protein refolding processes based
on online intrinsic fluorescence measurements were developed and
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Fig. 8. Specific total reaction rate 𝑘𝐼 obtained from the soft-sensor estimates through divison of 𝑑𝐼
𝑑𝑡

by 𝐼 prior to copper addition (A) and after copper addition (B). The violin
lot shows the underlying distribution of 𝑘𝐼 by kernel density estimation. The overlaid box plot visually represents the statistical properties of the distribution using quartiles with
he red dots being outliers.
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xperimentally validated on LDH and GalOx refolding processes. The
irect soft-sensor is easily applicable since it does not require any
inetic model parameters and is solely based on online measurements
f intrinsic fluorescence. Prerequisites for the application only include a
nown initial protein concentration and a correlation function between
he derivative of AEW and total reaction rate. Thereby, the direct soft-
ensor was able to accurately predict the total folding products of
he LDH (NRMSE = 6.1%) and the GalOx (NRMSE = 12%) refolding
xperiments.

Due to its simplicity the direct soft-sensor has some limitations.
ince it is based on a correlation model for the calculation of the
eaction rate 𝑑𝐼

𝑑𝑡 , it might violate physical constraints such as non-
negative concentrations. By using an indirect model-based observer
such as the particle filter used in this work, we were able to introduce
reaction kinetics and further constraints into the estimation. Thereby,
the PF observer did not reach concentrations below 0 gL−1.

This novel approach also serves as an enabler for advanced process
analysis. In particular, the soft-sensor supports the identification of ki-
netic mechanisms under fast reaction dynamics, which is still unfeasible
with a state-of-the-art offline sampling approach due to a low sampling
frequency and consequently low signal quality. The investigation of
the effects, that the denaturing agent (GuHCl) exerts on the specific
reaction rate 𝑘𝐼 , was illustrated as an example for the analysis of
process dynamics in GalOx refolding experiments.

Furthermore, a separation of the total prediction into native pro-
tein and insoluble aggregates was possible for LDH refolding under
the assumption of the fluorescence integral (𝐹 ) being a measure for
oluble protein concentration (𝐼 +𝑁). This, in turn, enables the online

calculation of quantifiable metrics such as the refolding yield over
the course of the process. However, we found that for proteins which
require a cofactor binding such as the GalOx, the assumption of 𝐹
being proportional to the soluble protein concentration does not hold
anymore since fluorescence quenching effects are often induced by the
addition of the cofactor.

Still, the results show that online monitoring of Trp and Tyr flu-
orescence is a valuable tool for soft-sensor development in refolding
processes. We propose further investigation of the prediction capabil-
ities for other relevant proteins, which include disulfide bridges and
cofactor binding. Especially the direct soft-sensor poses a high potential
for method transfer to other proteins since it does not rely on any
kinetic model parameters. Instead, a simple linear correlation between
𝑑𝐴𝐸𝑊

𝑑𝑡 and the reaction rate needs to be defined, which can be obtained
y a few experiments in small scale.
10
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