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Abstract 

Objective  Random effects are often neglected when defining the control strategy for a biopharmaceutical process. 
In this article, we present a case study that highlights the importance of considering the variance introduced by ran-
dom effects in the calculation of proven acceptable ranges (PAR), which form the basis of the control strategy.

Methods  Linear mixed models were used to model relations between process parameters and critical quality 
attributes in a set of unit operations that comprises a typical biopharmaceutical manufacturing process. Fitting such 
models yields estimates of fixed and random effect sizes as well as random and residual variance components. To 
form PARs, tolerance intervals specific to mixed models were applied that incorporate the random effect contribution 
to variance.

Results  We compared standardized fixed and random effect sizes for each unit operation and CQA. The results show 
that the investigated random effect is not only significant but in some unit operations even larger than the average 
fixed effect. A comparison between ordinary least squares and mixed models tolerance intervals shows that neglect-
ing the contribution of the random effect can result in PARs that are too optimistic.

Conclusions  Uncontrollable effects such as week-to-week variability play a major role in process variability and can 
be modelled as a random effect. Following a workflow such as the one suggested in this article, random effects can 
be incorporated into a statistically sound control strategy, leading to lowered out of specification results and reduced 
patient risk.

Keywords  Biopharmaceutical manufacturing, Process validation, Process characterization study, Random effects, 
Mixed-effects model, Likelihood model

Introduction
Biopharmaceutical manufacturers have a regulatory 
need to accurately describe production processes and 
to underpin design choices and control strategies with 
reports based on sound science. The registration appli-
cation for new drug substances and their corresponding 

products includes a detailed description of the manufac-
turing process and a justification for the proposed con-
trol strategy (ICH, 2011; ICH, 2008). The ICH defines a 
control strategy as follows:

A planned set of controls, derived from current prod-
uct and process understanding, that assures process 
performance and product quality. The controls can 
include parameters and attributes related to drug 
substance and drug product materials and compo-
nents, facility and equipment operating conditions, 
in-process controls, finished product specifications, 
and the associated methods and frequency of moni-
toring and control.
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The development of this control strategy, or pro-
cess characterization, constitutes a major part in the 
first stage of the FDAs process validation guideline 
(FDA, 2011) and is often the most elaborate and criti-
cal phase of development for a new drug product. Ide-
ally, this process should yield detailed knowledge about 
the individual parts of the process, i.e., critical quality 
attributes (CQA), impact of process parameters (PP), 
and sources of variability. The level of understanding of 
the product and its production process also affects the 
regulatory process, as stated in the ICH Q8 guideline 
(ICH, 2017):

A greater understanding of the product and its 
manufacturing process can create a basis for more 
flexible regulatory approaches. The degree of regu-
latory flexibility is predicated on the level of rel-
evant scientific knowledge provided in the registra-
tion application.

The FDA’s 2011 guide defines process validation as “the 
collection and evaluation of data” over the life cycle of the 
product, from product development to commercial pro-
duction, in order to establish scientific evidence that “a 
process is capable of consistently delivering quality prod-
uct.” Part of this is detecting and understanding differ-
ent sources of variation affecting the production process 
(FDA, 2011). This is especially important in stage 1 of 
the process validation activities, i.e., in the design phase 
where the effects of process parameters (PPs)/material 
attributes (MAs) and their impact on product quality are 
quantified. Design of experiments is recommended as an 
effective tool to achieve the following:

Design of Experiment (DOE) studies can help 
develop process knowledge by revealing relation-
ships, including multivariate interactions, between 
the variable inputs (e.g., component characteristics 
or process parameters) and the resulting outputs 
(e.g., in-process material, intermediates, or the 
final product).

DOE followed by linear regression for modelling rela-
tionships between PPs, MAs, and CQAs are common 
tools employed in biopharmaceutical development 
(ICH, 2017). The assumption of linear relationships, i.e., 
models being linear in their parameters and not nec-
essarily linear in their prediction of a factor, is gener-
ally valid for sufficiently small regions around a known 
working point (Montgomery, 2017). However, this 
should be carefully evaluated, e.g., by performing resid-
ual analysis of the derived models.

Process parameters are generally modelled as fixed 
effects that are assumed to be distributed around the 
true parameter value, i.e., E β̂j = βj . Typically, any-

thing actively controlled by an operator might be con-
sidered a fixed effect, e.g., the temperature within a 
reactor, pH values, and feeding rates.

Random effects, in contrast, are parameters that are 
not controllable in such a way. Their future setting in 
an experiment or run cannot be predicted beforehand. 
However, they can still impact product quality and 
should therefore be considered when identifying possible 
sources of variability. MAs can fall within this category. 
Examples for random effects are changing raw material 
attributes, transition conditions, or biological variability 
in seed trains or even variability introduced by different 
operators.

The FDA guide (FDA, 2011) states the following:

The functionality and limitations of commercial 
manufacturing equipment should be considered in 
the process design, as well as predicted contributions 
to variability posed by different component lots, pro-
duction operators, environmental conditions, and 
measurement systems in the production setting.

In most cases, a random effect affects a group of runs, 
which is called a block and the random effect a “block 
factor” (Montgomery, 2017). A typical example could be 
an experimental setup using a specific raw material lot for 
a set of runs. Statistical analysis is used to investigate the 
impact of those blocking effects. The resulting measure 
of variance is sometimes called inter-block variability, as 
opposed to intra-block variability, which constitutes the 
residual error term of the individual observations.

When processes are modelled in silico as regression 
models, block factors are usually incorporated as devi-
ation-encoded fixed effects. In its most common form, 
deviation encoding describes individual blocking effects 
by their distance from the overall mean of the response 
(Alkharusi, 2012). When no block information is pro-
vided for a prediction, its numeric value is set to zero, 
and the mean response for the “average” block is com-
puted, which is often the desired behavior. This, however, 
does not account for inter-block variability, and thus, the 
overall variability of the model is underestimated. As esti-
mators of variability are used to compute proven accept-
able ranges (PARs), this underestimation can have a large 
effect on the accuracy of such measures.

To illustrate this point, consider the method for calcu-
lating the PAR shown in Fig. 1. The plot shows CQA val-
ues as function of the process parameter screening range. 
The slope of the line in the center indicates the effect of 
the parameter on the CQA value. A measure of variability 
around the predicted mean is given by a statistical inter-
val (confidence, prediction, or tolerance interval) shown 
as dashed lines. The range of the PAR (gray area) can be 
calculated by finding intersection points between the 
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acceptance limits and the statistical interval. When taking 
into account the additional variance introduced by random 
effects, the interval gets wider, and consequently, the PAR 
gets smaller. To find PARs for each critical process param-
eter in relation to the CQA acceptance criteria in drug 
substance, either each unit operation can be analyzed indi-
vidually or integrated process modelling, enabling a holis-
tic control strategy (Zahel et al., 2017), can be employed.

To accurately describe the random nature of those 
blocks, linear mixed models (LMM) can be employed to 
incorporate multiple sources of variation. In particular, 
the variation of random blocks can be computed sepa-
rately and added to the overall variation of the model’s 
prediction. Burdick et al. briefly illustrated the statistical 
methods behind LMMs and how they could be applied 
in process validation stage 1 (process design) in general 
(Burdick et al., 2017).

Goos et  al. contrasted the conclusions drawn from 
OLS and LMM models in industrial split-plot designs 
and provides some guidance on analyzing experiments 
that involve random effects. The paper gives a motivat-
ing example and highlights some technical details of the 
method, like the proper choice of degrees of freedom 
(Goos et al., 2006). While pitfalls in improper experimen-
tal design and analysis are explained in a general man-
ner, our work puts, for the first time, the problem in the 

context of biopharmaceutical process development and 
provides a detailed workflow that considers characteris-
tics specific to the domain.

Usually, the potential impact of fixed effects such as 
pH, temperature, or oxygen concentration is assessed in 
risk assessment such as failure mode and effects analysis 
(FMEA) and then investigated experimentally. The main 
contribution of this article is to illustrate in a case study 
how strong random effects can be in comparison with 
these fixed effects. Moreover, we introduce a workflow to 
incorporate random effects into process characterization 
in a statistically sound manner.

Following a workflow such as the one proposed is impor-
tant in order to increase knowledge for the next round of 
risk assessment and experimental planning. Therefore, we 
aim to investigate the relative importance of random effects 
using a real-world data example of a full process charac-
terization data set generated at Boehringer-Ingelheim over 
multiple unit operations of a drug substance production 
process including upstream and downstream.

Materials and methods
Models
To contrast ordinary least squares (OLS) and linear 
mixed model (LMM)-based approaches for creating a 
control strategy, both model types were fit to the process 

Fig. 1  An example for how the PAR of a process parameter can be calculated. The intersection points of a statistical interval and the CQA 
acceptance criteria define the lower and upper boundary. Note that the PAR that ignores the random effect is larger than the one that incorporates 
the random nature of the effect
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characterization study (PCS) data. For OLS models, the 
random effect was treated as categorical fixed effect. 
While mean predictions are equivalent in this applica-
tion, only LMMs decompose variance into a random and 
residual part, enabling the calculation of more accurate 
statistical intervals. This is especially important in the 
context of control strategies where patient safety could be 
at risk as a consequence of intervals that are too narrow, 
i.e., optimistic. A detailed description of OLS models and 
LMMs can be found in (Montgomery et  al., 2021)  and 
(SAS Institute Inc., 2010), and key differences and formu-
las  are summarized in Additional file 4.

Statistical intervals
Statistical intervals represent an important and widely 
used tool to calculate and visualize uncertainty in data, 
estimators, or predictions in regression models. The 
most well-known type of interval is the confidence inter-
val, which expresses uncertainty around the models’ 
response, i.e., a confidence boundary around the pre-
dicted mean that contains the true population mean to a 
nominal level of confidence. Prediction intervals expand 
on this idea and add a standard deviation to the interval 
to define the region where a single, new observation is 
expected to fall within. To cover a nominal percentile of 
the actual distribution rather than a single observation, 
a third type of interval is used: the tolerance interval. 
Tolerance intervals cover the area that contains a prede-
fined proportion of the true distribution of a response, 
often called coverage, to a nominal level of confidence. 
As we are interested in this true distribution of a mod-
elled response, here in the form of critical quality attrib-
utes, tolerance intervals are used for the definition of the 
control strategy. Different techniques can be found in 

literature to account for variance components in the cal-
culation of intervals. Here, we use the method proposed 
by Franzq et al. (Francq et al., 2019) to include the ran-
dom contribution to variance estimated by linear mixed 
models. See Additional file 4 for a more detailed descrip-
tion of intervals and formulas used in the evaluation of 
the case study data.

Note that a tolerance interval converges to a prediction 
interval as the degrees of freedom increase. Figure 2 illus-
trates this effect while comparing the widths of the differ-
ent types of intervals on simulated data. For this example, 
OLS-based intervals were computed. However, the rela-
tive widths and the effect of the degrees of freedom are 
the same when using LMM-based intervals.

Manufacturing process
The case study was performed at Boehringer-Ingelheim 
as a PCS of a monoclonal antibody process. The process 
consists of typical steps such as fermentation of a cell 
culture, harvesting, protein A column, intermediate and 
polishing column, and an UFDF step. Generally, the pool 
(output) of a unit operation is used as the load (input) of 
the next unit operation, so that the overall production 
process can be seen a sequential chain of operations. The 
result of this chain is the actual drug substance, i.e., the 
product whose critical quality attributes are expected to 
fall within a predefined range, the so-called drug sub-
stance specifications.

Case study and data analysis
In a PCS conducted at Boehringer-Ingelheim, we investi-
gated the impact of process parameters on 11–22 CQAs 
in each of the  eight unit operations (UO). Models were 
created that regress a CQA in a unit operation onto 

Fig. 2  Comparison of different statistical intervals and sample sizes. For conceptual and mathematical reasons, prediction intervals are always wider 
than confidence intervals when the same confidence level is assumed. Note that the tolerance interval converges to a prediction interval as the 
degrees of freedom are increased
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factors found significant in the model selection process. 
The models were fit using data acquired in one-factor-
at-a-time (OFAT) and design of experiments (DOE) runs 
using bench-scale experiments that are representative for 
the manufacturing process (see Additional file  1). Rep-
resentativeness has been achieved via a pre-conducted 
small-scale qualification. During these activities, scale 
independent geometrical and engineering principles 
have been ensured as well as the absence of major perfor-
mance differences between the scales.

The designs for DoE runs were planned in a way that 
minimizes aliasing and correlation between parameters 
(D-optimal), and that makes sure that effects can be 
detected with adequate statistical power. The DoE design 
and power analysis were conducted for fixed effects using 
the statistical software JMP (version 14.0.0). For the a 
priori power analysis, all runs (DoE + OFAT) were used. 
Moreover, a full model that includes all interaction and 
quadratic effects was assumed, which represents the 
worst possible case in terms of power. By convention, a 
power value of at least 0.8 is recommended. The power 
values for finding significant effects within two or three 
standard deviations of the residual error around the set-
point are reported in Table  1. A common critical value 
of α = 0.05 was used as the significance threshold. Note 
that at the time the PCS was conducted, the power analy-
sis was not explicitly conducted to incorporate random 
effects; see “Random effects in power analysis” section 
for an explanation of our approach. We performed vari-
able selection (best subset selection or stepwise bidi-
rectional) to eliminate nonsignificant effects and create 
more parsimonious models. Data for each unit operation 
consisted of one random effect describing the week-to-
week variability across the experiments.

Good modelling practice was employed to check for 
model quality after variable selection. This was done 
by residual analysis to check for normality of residuals, 
inspecting model parameter p-values to determine if they 

exceed a threshold of 0.1, checking whether the RMSE 
is within expected reproduction variability and thereby 
mitigating the risk of overlooking effects as well as overfit-
ting, leave-one-out cross-validation to exclude biasing the 
model via single runs. These measures increase the con-
fidence that neither a substantial type 1 error (including 
effects that are not significantly different from 0) nor type 
2 error (overlooking effects) has been made. The latter also 
implies that no aliasing is expected, which may bias a fixed/
random effect. In general, we followed the approach to data 
analysis and model creation outlined as “workflow B” in the 
“Workflow B: modelling random effects using linear mixed 
models” section. The evaluation of effects in “Effect sizes 
and variances” section is summarized as a series of box 
plots that show the fixed and random effect sizes as well as 
variance ratios for each model (Figs. 3 and 4). To create a 
comparable measure of effect size, the original data used 
to fit the model were min-max normalized based on the 
parameter screening ranges. This means that all the input 
parameter values lie within the interval [−1, 1], and their 
effects after fitting are comparable within the model.

As the response values in the training data were not nor-
malized and used in their original scales, the effects were 
additionally divided by the root-mean-square error (RMSE) 
to make them comparable between models. For each 
model, an average measure of fixed and random effects was 
computed using their absolute values.
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Table 1  Average statistical power over all effects to detect an effect within 2 or 3 standard deviations from the set point. Note that 
those values represent the worst case that assumes a full model, i.e., a model that includes all quadratic and interaction effects

UO Power for 2 SD Power for 3 SD Runs DoE/OFAT RE levels Significant effects Responses

UO 1 0.91 0.99 24/6 3 16 22

UO 2 1.00 1.00 27/24 4-5 30 20

UO 3 0.95 1.00 17/5 5 10 14

UO 4 0.71 0.93 18/3 6 10 11

UO 5 0.94 1.00 21/3 5 15 17

UO 6 0.99 1.00 42/11 3 36 13

UO 7 0.82 0.96 0/6 5 3 11

UO 8 0.89 0.98 0/13 5 8 15
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where p − 1 is the number of parameters minus the 
intercept, m the number of levels of the random effect 
investigated, and σ̂ǫ represents the estimator of the resid-
ual variance, i.e., the RMSE. The intercept is excluded in 
the calculation of βCQA as only the effect of actual model 
parameters should be measured. A distribution of those 
values per unit operation is illustrated as box plots in 
Fig. 3. The figure highlights the random effects contribu-
tion to overall variance and compares it to the fixed effect 
contribution.

A similar approach was taken with the variance ratios 
in Fig. 4. Per CQA model, the ratio σ̂γ /σ̂ǫ was calculated, 
and the distribution of values is shown as box plots per 
unit operation.

Results
In the analysis of the case study data of real industrial 
data from a PCS, we contrast the OLS and LMM-based 
method to forming statistical intervals. As a random 
effects contribution to observed variance is proportional 
to its effect size, we first compare normalized estima-
tors of fixed and random effects. This helps us to iden-
tify how strong random effects are in comparison with 
well-known fixed effects, such as pH and temperature. 
We then show how this random contribution increases 
the tolerance intervals and, in turn, reduces the PAR in 
an example picked from the case study.

Effect sizes and variances
The random effect investigated in the analysis of the case 
study data was week-to-week variability. To show effect 
sizes of the random effect predictors relative to fixed 
effects and their contribution to variability, LMMs were 
fit to the data. Figures 3 and 4 show the effects and vari-
ances per unit operation. It can be seen that the random 
effect is even greater than the fixed effect in some of the 
unit operations. Ignoring the random effects’ impact on 
variability would underestimate the size of statistical 
intervals and result in an inappropriate control strategy. 
In four of the eight unit operations (UO3, UO5, UO7, 
and UO8), the median standardized random effect size 
was larger than the median standardized fixed effect size 
(see Fig. 3). In the other UOs, the random effect size is 
approximately the same as the fixed effect. Moreover, for 
six out of eight UOs (UO2, UO3, UO4, UO5, UO7, UO8), 
the median variance ratio of random versus residual vari-
ance is equal or larger to one (see Fig. 4). Effect sizes are 
of course dependent on the experimental design the data 
is based on. However, while variation of random effect 
estimates might be larger than those of fixed effects, a 
general trend is clearly discernible in our results (see 
Fig. 3), and significance of both random and fixed effects 
was checked in the model selection process.

LMM random effect predictors are often described as 
the empirical best linear unbiased predictors (EBLUP) 

Fig. 3  Standardized fixed and random effect sizes are contrasted for each unit operation. A unit operation contains models for 11–22 CQAs, and 
their respective fixed and random effect distributions are shown as box plots. To create comparable measures of effect size, normalized data were 
used to fit the models, and the effects were divided by the RMSE. Note that for several unit operations, the median random effect is even larger 
than the median fixed effect
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in literature and yield more accurate effect sizes when 
compared to those obtained by modelling them as fixed 
effects using OLS (Govaerts et  al., 2020). Due to the 
way they are calculated in mixed models (see Additional 
file 4), they tend to be closer to zero. This should be con-
sidered when comparing random and fixed effect sizes in 
Fig. 3. The amount by which their effect size is “shrunk” 
is inversely proportional to the associated variance com-
ponent, i.e., the smaller the random effects variance, the 
larger the amount of shrinkage and vice versa. Figure  4 
shows that in our case study, random effect variance is 
quite large relative to that of fixed effects, indicating that 
effect sizes based on EBLUPs should not differ substan-
tially from those of obtained from modelling random 
effects as fixed effects using OLS. Moreover, our overall 
message that random effects are equally or more influen-
tial in a representative process characterization would be 
even more pronounced calculating out the shrinkage.

Tolerance intervals
Modeling a random effect as a categorical, fixed effect 
using OLS models is an often-employed practice in biop-
harmaceutical manufacturing. Here, we show the impli-
cations of this approach in a representative example 
picked from a real-world case study. Assuming a normal 
distribution of residuals, the chosen tolerance interval 

should contain at least 90% of observations in 50% of 
repeated samplings. However, this was not the case. As 
illustrated in Fig. 5, in extreme cases, the OLS tolerance 
interval almost never included the value observed in the 
runs. This was due to variability introduced by different 
blocking factors in the production process. The larger 
the blocking effect, the larger its influence on variability 
— a quantity that is ignored in the OLS case. Incorporat-
ing random effect variability by employing LMM models 
and appropriate interval calculation methods solves this 
problem, which can be seen in the outer interval in Fig. 5.

Further analysis revealed that this observation was 
not an exception, but that the data for most CQAs 
included significant blocking effects that would result in 
a tolerance interval too narrow when ignored. Table  2 
gives an overview of interval width ratios r = (TILMM, 

upper − TILMM, lower)/(TIOLS, upper − TIOLS, lower) for the most 
common CQAs at setpoint conditions. Depending on 
the random effect size, the LMM intervals can be several 
multiples as wide as their OLS counterparts, when ignor-
ing the random effect.

PAR and control strategy
The general increase in tolerance interval width when 
incorporating random effects and LMMs reported in 
the previous section can have a considerable impact on 

Fig. 4  Variance ratios (random variance/residual variance) are shown per unit operation on a logarithmic scale. For each model in a unit operation, 
the ratio between random and residual variance is calculated and the resulting distribution illustrated as a box plot. As random effect size increases, 
so does its contribution to variance — in some cases, the random contribution to variance is many times as large as the residual variance
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the control strategy. Again, a representative example 
is selected from the case study in the form of a pro-
cess parameter. For the chosen parameter, both an OLS 
model and LMM was fit, and tolerance intervals were 
calculated using the corresponding methods (for mod-
els and data, see Additional file  3). As can be seen in 
Fig. 6, when using the intersection points of the inter-
val with the upper acceptance limit, the resulting PAR 
for OLS is indeed wider than the one based on the 
LMM.

Depending on the size of the fixed effect and the cho-
sen acceptance limits, the reduction of the PAR might 
be more or less severe. Generally, for PARs formed with 

the method illustrated, its size can only decrease with the 
increase of the interval width as indicated in Fig. 6.

Discussion
Workflows to establish a control strategy
As shown in the case studies presented in the “Results” 
section, random effects can have a large effect on statisti-
cal intervals, the PAR, and consequently the control strat-
egy. Here, we propose a workflow for establishing a control 
strategy that incorporates random effects at various stages. 
We first suggest an OLS-based workflow typically used in 
the industry and then contrast this strategy with one that 
incorporates random effects using linear mixed models.

Fig. 5  A 90%/50% tolerance interval is created around the mean. By definition, it should include 90% of the data in 50% of cases, which is obviously 
not the case when using an OLS model. However, the interval computed using variance information from the LMM model does indeed cover at 
least 90% of observations

Table 2  LMM/OLS tolerance interval width ratios for 6 of the most common CQAs per unit operation. Due to the strong random 
effect, the LMM interval is generally much wider than the OLS interval

UO 1 UO 2 UO 3 UO 4 UO 5 UO 6 UO 7 UO 8

CQA 1 1.85 3.80 2.67 3.18 3.01 1.57 1.17 1.08

CQA 2 1.62 1.65 6.15 3.36 4.59 3.37 2.38 5.15

CQA 3 1.70 4.99 3.43 4.06 2.43 2.34 1.41

CQA 4 1.85 1.64 1.77 1.12 4.38 8.95 2.84

CQA 5 1.80 4.58 1.37 8.34 2.92 3.10

CQA 6 1.67 1.25 9.02 3.46 2.98
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Workflow A: modelling random effects as fixed effects 
using OLS
In the first step, the data that constitutes the basis for the 
regression model is acquired. We assume that data origi-
nates from a design that ensures desired properties for 
analysis, such as minimal correlation, minimal aliasing, 
and maximal power. In this phase, random blocking fac-
tors are identified alongside all other factors that might 
influence the response of the process, and their values 
are aggregated into a single data source that enables 
convenient analysis. This is followed by a preprocessing 
step where those data are cleaned up and response data 
possibly transformed to a form that satisfies OLS model 
assumptions (normality of residuals). Random effects are 
treated as categorical fixed effects and deviation-encoded 
so that the reference for the individual block coefficients 
is the grand mean of the response. This enables to set the 
blocks to zero for predictions, which results in a “mean 
block” prediction of the response. At this stage, a “full 
model” can be created by adding quadratic and inter-
action effects for each main effect. Given the available 
number of observations, use case, or preference, this 
full model can be used directly. Alternatively, the list of 
effects can be used as the input for a variable selection 
procedure to find a parsimonious model that explains 
the response while eliminating insignificant parameters. 
Such procedures are commonly based on estimators of 
prediction error, for example, the Akaike information 
criterion (AIC), or on p-values of model parameters. 
The implementation of such estimators depends on the 
type of model used, as they are different for OLS and 
LMM. Blocking factors might be found insignificant 
in the variable selection process and removed from the 
model. In the last step, either the full or optimal model 

is used to compute the predicted values for the training 
data, whereby the predictor variables for the block are 
set to zero. Around those predictions, a tolerance inter-
val is formed that contains a proportion of the population 
(coverage) with a certain probability (confidence). This 
should be reflected by the observed values of the train-
ing data contained in the interval. The PAR of the param-
eter is formed by the intersections of the interval with the 
acceptance criteria (see Fig.  1). However, such a toler-
ance interval based on OLS models does not incorporate 
the variance introduced by random effects correctly and 
might lead to control strategy that is too optimistic.

Workflow B: modelling random effects using linear mixed 
models
As it was the case in the first workflow, the LMM-based 
procedure starts by identifying both fixed and uncontrol-
lable, random effects. Special attention is given to the lat-
ter as often multiple random factors are involved, which 
can be nested or crossed, both of which influences vari-
ance calculations in different ways. In addition to corre-
lation analysis of fixed effects, some data prerequisites 
specific to LMMs should be checked to make sure the 
likelihood optimization converges, though this depends 
on the statistical software or library employed. Statistical 
significance of individual blocks potentially affects con-
vergence and can be examined beforehand by deviation 
encoding them as described in in workflow A and investi-
gating their effects using p-values obtained from an OLS 
fit. The levels of the random block variable as well as the 
number of intra-block observations are also factors in 
the optimization algorithm as highly imbalanced blocks 
can be the source of convergence problems. After mak-
ing sure that the data meets all the criteria for applying a 

Fig. 6  PAR for a randomly picked parameter calculated from case study data. Due to the contribution of the random effect, the interval based on 
LMM variance components (right) is wider than its OLS counterpart (left). This results in smaller PAR (gray area) and a more conservative control 
strategy. In this example from the case study, the OLS PAR is 72% larger than the more conservative LMM PAR



Page 10 of 13Oberleitner et al. AAPS Open             (2023) 9:4 

LMM, a full model that includes quadratic and interac-
tion effects can be created. Again, this full model can be 
used directly or as the input for variable selection where 
insignificant model parameters are eliminated in each 
step of the algorithm until the optimal model is found. 
In this workflow, variable selection can be performed 
in two different ways: one option is to deviation-encode 
random blocks and fit OLS models which are then used 
for evaluation in each step — essentially the same process 
as in the first workflow. The fixed effects from the final 
model are then used to transform the OLS model into an 
LMM. This can be a sensible workaround in  situations 
where one is constrained by software lacking variable 
selection procedures that incorporate random effects. 
However, note that this approach might not be possible 
in some experimental designs. The second option is to 
use LMM-specific evaluation criteria in each step of the 
variable selection process. While this might be the most 
obvious approach, it is also not universally applicable, 
depending on the algorithm, criteria, or performance 
constraints. After a satisfactory model is found, predic-
tions can be computed. For LMM, this means that only 
the matrix of fixed effects needs to be provided for the 
prediction as the model automatically assumes the “mean 
block” for the results. This is different from OLS models 
where blocks need to be set to zero explicitly for the pre-
diction. The notable difference between the models is in 

how model variance is computed and partitioned, which 
is important in the next step: the calculation of statistical 
intervals. Here, mixed models include a measure of vari-
ance of both fixed and random effects which, depending 
on the magnitude of the random effect, can widen the 
interval and therefore reduces the acceptable range of the 
process parameter.

Figure  7 summarizes the OLS- and LMM-based 
approaches to establishing a control strategy and pro-
vides an overview of their main differences.

The workflows outlined here represent two methods for 
computing PARs using common data-science techniques. 
Workflow A shows a common approach employed in 
biopharmaceutical manufacturing, while workflow B 
represents our proposal for an extended version that 
incorporates random variance correctly into statistical 
intervals. Given the unlikely scenario of a process being 
not affected by random effects at all, workflows A and B 
would result in the same control strategy.

Modelling scale impact
For the process characterization study described in 
this article, only data from bench-scale DoE and OFAT 
experiments were used, as no large-scale data was avail-
able at that point in time. Typically, manufacturing data 
is supplemented in the analysis to investigate the effects 
of scale. In regression models, this can be done by simply 

Fig. 7  Workflows for creating control strategies based on regression models. The left column describes an approach that uses OLS models for the 
estimation of PARs. A mixed-model-based workflow is summarized on the right. The differences in the steps involved are subtle but generally result 
in a more realistic estimation of variance and therefore a more robust control strategy
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adding a categorical factor to the model with one level 
per data source (e.g., “large scale” and “DoE”). As a regu-
lar, fixed effect, such a factor can be subject to variable 
selection and might be removed from the model when 
deemed insignificant. Relationships between scale and 
other effects in the model can be explored by creating 
scale-interaction effects prior to variable selection, pro-
vided enough degrees of freedom are available to detect 
them. Admittedly, this requires off-setpoint runs at large 
scale which are unlikely to be available in a data set.

Random effects in power analysis
At the time the experimental runs for the PCS were 
planned and the power values in Table 1 were calculated, 
the importance of random effects was not known to its 
full extend. Therefore, a priori power analysis that con-
siders the random variance component explicitly was not 
performed. Simulation-based power calculation meth-
ods that incorporate a random variance contribution are 
available in some software packages. This might be con-
sidered in future experimental planning. However, how 
does this affect our claim that random effects are strong 
throughout most UOs?. When considering the random 
effect levels in Table  1, one could argue that the num-
ber of levels might not be sufficient in terms of statisti-
cal power to detect all active random effects. However, 
it should be noted that the effect sizes shown in Fig.  3 
have been obtained using the variable selection method 
described in workflow B (“Workflow B: modelling ran-
dom effects using linear mixed models” section), which 
controls via a p-value threshold for the false-positive 
rate/type 1 error, even though actual effect sizes might 
be smaller due to the shrinkage effect described in “Effect 
sizes and variances” section. The random effect was then 
checked for significance in the resulting models using 
variance ratio tests (Nakagawa & Schielzeth, 2013). In 
only 18 of the 123 models, the random effect was found 
to be not significant, in which case a value of zero was 
used for the data points shown in Fig. 3. Moreover, aver-
ages of random effect predictor sizes found by LMM over 
all models are strong throughout all unit operations. This 
supports our finding that, overall, the random effect is 
oftentimes larger than the fixed effects. While the lack of 
statistical power might lead to overly conservative toler-
ance intervals, the PARs of this study have been found to 
be practically acceptable for manufacturing.

Implications for the biopharmaceutical industry
Workflow B proposed in the “Workflow B: modelling 
random effects using linear mixed models” section puts 
the method for considering random effects in process 
design (stage 1) proposed by Burdick et  al. (Burdick 
et al., 2017) into the context of a workflow that includes 

variable selection. This aligns with the ICH8 recommen-
dations for including all potential sources of variation 
into the computation of the control strategy (ICH, 2017).

Ignoring a random effect or modelling it as a fixed 
effect can change effect and variance estimates notably. 
Goos et  al. (Goos et  al., 2006) demonstrated in a simu-
lation study that this is the case for improperly analyzed 
split-plot designs, and our results show that it holds true 
for the analysis of a process characterization data in biop-
harmaceutical manufacturing. The statistical implica-
tions of inappropriately choosing an OLS model over an 
LMM for the calculation of intervals is shown in “Toler-
ance intervals” section.

Large tolerance intervals and pronounced random 
effect sizes indicate that an effect affecting the process 
is poorly understood, and its true root cause should be 
investigated. By identifying the source of random varia-
tion and controlling it, it can essentially be resolved into 
a fixed effect.

For example, vendor-to-vendor variability of a raw 
material might lead to a large random effect, i.e., an unex-
pected random source of variation. Consequently, a set 
of experiments can be conducted to identify the true 
root cause of this variation, e.g., a supplement of the raw 
material. Provided the manufacturer is able to control 
this supplement, it can be incorporated into a model as 
a fixed effect. If this is not feasible or planned for a later 
point in time, LMM tolerance intervals can be used to 
estimate the distribution of critical quality attributes 
more accurately and to find a conservative control strat-
egy for the fixed effects, thus reducing out-of-specifica-
tion events.

In general, we recommend the following:

•	 Investigate the practical significance of the random 
effect (e.g., does its variance take up a large fraction 
of the CQA acceptance limits/drug substance specifi-
cation and hence is a risk to the patient?).

•	 If feasible, conduct experiments to identify causes of 
random variation and re-evaluate experimental data.

•	 If it turns out that the effect can be modelled and 
controlled as a fixed effect, implement changes in the 
process to control the root cause.

•	 Uncontrollable effects can still be modelled as ran-
dom effects in LMMs for conservative tolerance 
intervals.

Note that process validation is a risk-based approach 
starting with risk assessment conducted to identify 
potentially impacting factors (fixed and random effects). 
Of course, if this initial step overlooks one of the impor-
tant factors, they will not be assessed experimentally. In 
case those underrated factors from the risk assessment 
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are not controlled well in manufacturing, the control 
strategy established through a PCS might be insufficient. 
In that case, stage 3 of process validation (continued pro-
cess verification — CPV) steps in and aims at identifica-
tion of special cause variation possibly raised from one 
of the underrated factors. When special cause variation 
can be detected, it may trigger a new round of risk assess-
ment and experimental planning and analysis, bringing 
birth to a true life cycle, which FDA proposes in its 2011 
PV guideline.

Conclusion
In this article, the role and impact of random effects on 
setting the control strategy of a biopharmaceutical pro-
cess were investigated in a real-world case study con-
ducted at Boehringer Ingelheim. Data from a production 
process comprised of eight up- and downstream unit 
operations were analyzed in a case study. Although this 
contribution is based on an extensive process characteri-
zation of a monoclonal antibody process and the results 
are believed to be representative for similar processes, 
we encourage researchers to conduct similar case studies 
with other processes and random variables. Here, inter-
week batch variability was chosen as the random effect. 
Such an effect, if not ignored entirely, is commonly incor-
porated in an OLS model as a categorical fixed effect. For 
the case study, however, the factor was modelled as a ran-
dom effect using linear mixed models where the segmen-
tation of variance components into random and fixed 
components enables a more accurate calculation of sta-
tistical intervals. The results show that the random effect 
not only increases the width of the statistical intervals 
used to compute PARs, but also exceeds even in several 
unit operations the average size of the fixed effect. Those 
findings are confirmed by the number of observations 
contained within the tolerance interval, which agrees 
with the nominal coverage level for LMMs but not for 
OLS models. As random effects might have such a strong 
impact and even stronger impact than fixed effects, 
they should be incorporated into risk assessments and 
included into experimental studies. If tolerance intervals 
derived from LMM models are too large, further inves-
tigations should be performed to resolve random effects 
into fixed effects, e.g., by identifying the underlying root 
cause of the variation and controlling it. However, until 
this state is reached, the random variance should at least 
be accounted for in the model prediction uncertainty as 
described in this contribution.

Furthermore, we presented a workflow commonly 
used for creating a control strategy using OLS models. 
In this workflow, one of the standard implementations 
of tolerance intervals in a multiple regression setting 
is utilized, and the intersection points with acceptance 

criteria are computed to arrive at the acceptable range 
for each process parameter. This constitutes the con-
trol strategy for the process. As an alternative, we pro-
posed an LMM-based workflow that performs similar 
actions but touches upon certain characteristics of 
random effects and mixed models. This mainly mani-
fests in the variable selection process and in the com-
putation of statistical intervals where the variance 
introduced by fixed and random effects is incorporated 
appropriately. We suggest the use of tolerance intervals 
based on the sum of expected mean squares proposed 
by Franzq et al. (Francq et al., 2019). Depending on the 
group structure and the available degrees of freedom, 
the interval produced by this method tends to be wider 
than its OLS counterpart.

Identifying and incorporating random effects are 
vitally important when defining the control strategy of 
a process and adjacent tasks like experimental planning 
and risk assessment. Employing methods described in 
the proposed workflow, e.g., linear mixed models and 
corresponding tolerance intervals, leads to a more con-
servative and appropriate control strategy, which ulti-
mately facilitates more robust processes, patient safety, 
and fewer out-of-specification events.
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