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Abstract: Numerous analyses have modeled the flow of polymer melts in the melt-conveying zones
of single-screw extruders. While initial studies mainly provided exact analytical results for combined
drag and pressure flows of Newtonian fluids, more recently developed, numerical methods seek
to deepen the understanding of more realistic flow situations that include shear-thinning and non-
isothermal effects. With the advent of more powerful computers, considerable progress has been made
in the modeling and simulation of polymer melt flows in single-screw extruders. This work reviews
the historical developments from a methodological point of view, including (1) exact analytical,
(2) numerical, and (3) approximate methods. Special attention is paid to the mathematical models
used in each case, including both governing flow equations and boundary conditions. In addition,
the literature on leakage flow and curved-channel systems is revisited.
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behavior of composite materials.

Rather than tracing the developments in the modeling and simulation of polymer
extrusion in general, the purpose of this review is to specifically address the main progress
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iations. development of more advanced computers, numerous melt-conveying models of increasing
complexity and accuracy have been presented. These can be classified on the basis of
(a) the geometrical and physical conditions under consideration, or (b) the underlying

mathematical methodology, as illustrated in Figures 1 and 2, respectively.

This work reviews the existing theories from a methodological viewpoint, including
(1) exact analytical, (2) numerical, and (3) approximate approaches. For a comprehensive
review of global extrusion modeling, see Wilczyrinski’s work [25]. In the first part of this
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Figure 1. Model categorization A: Classification of melt-conveying models according to the geometric
and physical conditions under consideration.
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Figure 2. Model categorization B: Classification of melt-conveying models according to the mathe-
matical methodology applied.

2. Modeling Fundamentals
2.1. Screw Geometry

Figure 3 presents the basic geometry of a single-flighted extruder screw section.
The most important parameters are the barrel diameter D), the channel depth &, the
screw pitch ¢, and the flight width e. The screw core diameter D, can be calculated ac-
cording to Equation (1). The pitch angle and the channel width are functions of the radial
screw position. At the barrel diameter, the parameters ¢, and w;, are obtained from
Equations (2) and (3), respectively.

Several coordinate systems can be used to describe the flow along the helical screw
channel. Calculations in helical coordinates have only been presented by a limited number
of authors [27-36]; the main reason is that the governing flow equations in these coordinates
are not very well established (see Section 7).
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To avoid the helical reference frame, the screw channel is often conceptually unwound
and laid out on a flat plane. In most cases, the screw is unwrapped at the radial position of
the barrel. The result of this approximation—widely referred to as a flat-plate model—is
a straight rectangular screw channel covered by a flat plate, which represents the barrel
surface (Figure 4a). Note that, when using the flat-plate model, the dependency of geo-
metric parameters on the radial position is omitted. When unwinding the screw at the
radial position of the barrel, the cross-section of the flow channel is hence overestimated.
Calculations based on an average channel width were presented in [6].

-

(a) (b)

Figure 4. Flat-plate model of the helical screw channel (a). For shallow screw channels with
h/wy < 0.1, the effect of the screw flights can be ignored (b).

The curvature of the screw being ignored, the flow can be described by a Cartesian
coordinate system with x, y, and z denoting the cross-, up-, and down-channel directions,
respectively. The error introduced by unwinding the screw is small for screw sections with
small 1/ Dy, and becomes more significant for deeper channels [37]. In addition, for shallow
channels with i /w;, < 0.1, the influence of the screw flights can be ignored [7], which gives
rise to an infinitely wide screw channel, as shown in Figure 4b.

Traditionally, the flat-plate model has been used in combination with kinematic re-
versal. This entails that the screw is considered to be stationary and the barrel surface to
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be moving at circumferential speed v, at an angle of ¢, with respect to the down-channel
direction. Analyzing the flow from a reference frame attached to the screw, the barrel
velocity can be decomposed into components in the cross- and down-channel directions,
vy and vy, ,, respectively:

Vp = Db N (4)

V. = Vi cos(@p) Vp,x = Vp sin(@p) )

In the early 1990s, several studies proposed an alternative kinematic approach that
considers the screw as the rotating component in the flat-plate system [38-42]. A thorough
textbook on screw rotation modeling was presented by Campbell and Spalding [6].

Rauwendaal et al. [43,44] critically reappraised the validity of the two kinematic
approaches in combination with the flat-plate model. Assuming the flow of a Newtonian
fluid, the methods were shown to differ only slightly for the normal range of channel depth
values (1/Dj, < 0.1). For the case of the channel depth being large in relation to the barrel
diameter (/D > 0.2), it was demonstrated that the inability of the flat-plate model to
properly account for the screw curvature causes errors in both theories; these were more
pronounced when the moving-screw assumption was applied.

2.2. Conservation Equations

The differential equations governing all types of flow are the conservation equations
of mass, momentum, and energy [45]:

)
P+ V-(pv) =0 (©6)
%(pv)—l—V-(pvv)z—Vp—i—V-T—i—pg (7)
aT d
pcv<at+V'(TV)> =V-(A VT)—T(a;)P(V‘V)-ﬁ-T:L 8)

In the past, theoretical analyses of melt conveying in single-screw extruders were
commonly based on various modeling assumptions. Typically, the flow is considered
to be in a steady state; that is, time-dependent effects due to, e.g., transient changes in
extrusion conditions, are ignored. Furthermore, the polymer melt is often assumed to be
incompressible, which implies that the density is locally constant. In addition, the flow of
polymer melts in metering channels is usually laminar. Due to the high viscosity of polymer
melts and the low fluid velocities in the channel, the flow is predominantly governed by
viscous rather than inertial forces. A dimensionless parameter representing the ratio of
inertial to viscous forces is the Reynolds number (Re). For a power-law fluid, this parameter
is defined by Equation (9), where L is a characteristic length and v a characteristic fluid
velocity [46]:

Ll’l
KPV”*2 ©

For most extrusion conditions, Re < 1; thus, the flow can be reduced to Stokes flow.
In combination with the aforementioned simplifications, the flow can be described by
Equations (10)—(12):

Re =

V=0 (10)
Vp=V-1 (11)
pcy (v-(VT))=V-(AVT)+7:L (12)

2.3. Constitutive Equations

A complete description of the governing flow equations requires definition of the
thermodynamic and rheological properties of the fluid. In general, polymer melts exhibit
shear-thinning and viscoelastic effects. In the analysis of single-screw extruders, it is widely
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accepted that elastic time effects play only a minor role, as the polymer melt passing through
the screw channel is typically subjected to large deformation rates for relatively long periods.
For this reason, the polymer melt is usually treated as an inelastic viscous fluid characterized
by the generalized Newtonian fluid constitutive relation given in Equation (13). To date,
viscoelastic effects, which can be described by many complex constitutive equations, have
received relatively little attention in extrusion modeling. Published work is available for
the flow through extrusion dies [47-49] and melt-conveying zones [36,50-52]. The main
reason for the scarcity of work on viscoelastic flow analysis is the high computational
power required for these types of flow.

T=2nD (13)
_1 T

D—E(L+L) (14)
L=Vv (15)

A simple viscosity model for polymer melts is the power law (Equation (16)) according
to Ostwald and de Waele [53,54]. On a log-log scale, the power law is a linear function.
Since slope and intercept depend on the shear rate at which the mathematical fit of the
experimental data is performed, the model works well only within a specific range of
shear rates. To approximate the viscosity behavior of polymer melts in the terminal and
shear-thinning regimes, numerous models of increased complexity are available in the
literature [4]. Since most melt-conveying models that include shear-thinning flow behavior
are based on the power law, detailed descriptions of other approaches are avoided. For
multidimensional flows, the magnitude of the shear rate can be calculated according to
Equation (17):

n=K3[" e (16)

4] = y20:D) 7)

The temperature sensitivity of the viscosity can be described by the temperature-shift
factor a;, which is frequently approximated by a simplified Arrhenius-type relationship
(Equation (18)). Note that a; = 1 for isothermal flows. The effect of pressure on viscosity, in
contrast, is usually ignored.

ar = exp[—a(T — Tp)] (18)

2.4. Fully Developed Flows

A widely used simplification in the analysis of flow in single-screw extruders is the
assumption of a hydrodynamically fully developed flow. When using the flat-plate model
(Figure 4a), Equations (10) and (11) can be further simplified by introducing the lubrication
approximation [4]. According to this theory, the velocities in the down-channel direction
may be regarded as being fully developed. This means that the velocities vy, vy, and v,
are functions of x and y only. Consequently, the continuity and momentum equations
can be reduced to Equations (19)-(22), whose stress components 7;; are obtained from
Equations (13)—(15). Furthermore, the magnitude of the shear rate can be described by
Equation (23).

an avy -
Tty =0 (19)
ap _ aTxx aTxy _ d a a avx ov y
ax  ox dy  ox SkArry ay T\ oy Tox (20)
I _ ITyx a‘rﬂ _9 OV 8& i aﬁ (21)
dy  ox oy ox| '\ oy T ay 21 oy
dp 9ty 0Ty 9 [ v\ . 9 [ ov.
2 ox ' dy _E)x( > 8< > @2)
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A number of analyses additionally apply the lubrication approximation to the tem-
perature distribution in the z-direction. If a thermally fully developed flow is assumed,
the energy equation can be reduced to Equation (24). This means that the heat generated
internally must be conducted away entirely through the screw and barrel surfaces, and
that there is no convective heat transfer in the down-channel direction. As the thermal
conductivity of polymers is generally low, this simplification represents only a rare case of

extruder operation. Hunter and Zienkiewicz [55] demonstrated the effects of temperature
variations across lubricating films.

2T  9°T vy vy ovy Ovy ov, ov,
)Gt ar) e (G ) re tely @

The three-dimensional model can be further simplified by assuming the channel aspect
ratio /1/wy, to be large, as shown in Figure 4b. The screw flights being ignored, the flow
field is two-dimensional, with two non-zero-velocity components, v, and v,, which are
independent of x. In this case, the continuity equation is implicitly fulfilled, and the flow is
governed by Equations (25)—(28). The magnitude of the shear rate can be obtained from

Equation (29).

ap o dey . d de

R 1 )
I _
@ =0 (26)

ap o dey - d de

r e )

A>T dvy dv,

/\dyz xy dy Yz dy (28)

0.5

- [ (5]

For the one-dimensional down-channel flow, the momentum equation is given by
Equation (27). Moreover, the energy equation and the magnitude of the shear rate result
from Equations (30) and (31), respectively.

d2T dv

Wy 0
) dv, >

iy <dy

2.5. Developing Flows

While the assumption of a hydrodynamically fully developed flow is usually justified
(Re < 1), some studies have emphasized the dominant effect of convective heat transport
in the energy equation at higher Péclet numbers (Pe ~ 10%) [14,56]. This dimensionless
parameter describes the ratio of convective to diffusive transport rate, and is defined by
Equation (32):

:vacp
A

Especially in large extruders, a thermally fully developed flow will not necessarily
be achieved even at the exit of the processing machine [57]. In a hydrodynamically fully

Pe (32)
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developed flow, convective heat transfer can be considered by Equations (33) and (34) for
three- and two-dimensional flows, respectively:

c va—T+va—T+va—T =A 2)27T+827T +T %—i—r aﬁ-ﬁ-’l’ 8&4—8& + 7T a&—l—r AL (33)
NPT Yoy - oz ) T \ax? ' ay? Tox Moy T Y\oy  ox ox oy

oT 2T oVy av,
pCszg = /\W + Tyxw + Tyz@ (34:)

2.6. Boundary Conditions and Mathematical Constraints

Most melt-conveying models in the literature were developed under the no-slip con-
dition, which results in the following conditions in the case of the flat-plate model with
reversed kinematics (Figure 4a):

Vi(x=0)=0 vx(x =wp) =0 vx(y=10)=0 Vx(y=h) = vy (35)
vy(x=0) =0 vy(x =wp) =0 vy(y=0)=0 vy(y="h)=0 (36)

Vz(x = 0) =0 Vz<x = wb) =0 VZ(y = 0) =0 VZ(]/ = h) = Vi, (37)

In a partially filled screw channel, as shown in Figure 5, the flow field exhibits a free
surface rather than being constrained by the trailing flight, which requires the shear stresses

to be zero.
avy aVZ
vy (x — wb,uf) —0 W oy, 0 | 0 (38)
(L]
!
i

»k
5

F

[
o —— L ——

wb,uf

Figure 5. Partially filled screw channel. The widths of the filled and unfilled channel sections are
wy, s and wy, , 5, respectively.

It is widely known that, under particular conditions, some materials, such as filled
polymers, elastomers, and polyvinyl chloride, exhibit wall slippage—that is, a relative
velocity between the fluid velocity at the wall and the wall velocity. Numerous studies
have used a variety of slip conditions to account for wall slippage [58-66].

Prediction of the temperature distribution in the screw channel additionally requires
the use of thermal boundary conditions, which may specify either the absolute temperature



Polymers 2022, 14, 875 8 of 32

of the screw and barrel surfaces or the heat fluxes normal to the walls. A critical discussion
of the validity of these conditions was given in [21].

T(y =h) =Ty(2) (39)

T(x =0) = Ts(z) T(x =w) = Ts(z) T(y =0) = Ts(z) (40)
oT oT oT

gxzozo $X*w:0 @y:OZO (41)

Frequently, the effect of the flight clearance is ignored in flow analyses of infinitely
wide screw channels, which entails that the cross-channel net flow is zero.

h
/dey =0 (42)
0

3. Exact Analytical Approaches

The first theoretical analyses of polymer melt flows in single-screw extruders dealt with
Newtonian fluids with temperature-independent viscosity. Assuming the viscosity to be
constant uncouples the energy equation from the continuity and momentum equations. The
mathematical problem was further simplified by assuming the flow to be fully developed,
which allowed the down- and cross-channel flows to be investigated independently.

Most studies that published closed-form analytical solutions for the flow in single-
screw extruders applied the flat-plate approximation (Figure 4). For Newtonian fluids, the
material transport along the channel due to the relative movement between barrel and
screw and the pressure gradient caused by the restrictive effect of the die is independent of
the circulatory transverse flow. The net rate of discharge is therefore governed solely by
the velocity distribution in the down-channel direction. Assuming a laminar steady-state
flow of an incompressible fluid, the velocity field follows Equation (22). This elliptic partial
differential equation is often referred to as Poisson’s equation.

The fluid velocity varies over the depth and lateral position of the screw channel.
Closed-form analytical solutions to this non-homogeneous differential equation were
derived for various boundary conditions by using the method of separation of variables.
To further simplify the mathematical problem, several authors assumed the flow to take
place in the y — z mid-plane between the screw flights. In this case, the momentum
equation is reduced to Equation (27). Table 1 provides an overview of mathematical models
developed for the flow of Newtonian fluids in metering channels.

Table 1. Mathematical models of extruder flow of Newtonian fluids with temperature-independ-
ent viscosity.

Boundary

No. Flow Equations Conditions

One-dimensional isothermal
1D_a down-channel flow of a (27) (y = const.) 37)
Newtonian fluid

One-dimensional isothermal
1D_b down-channel flow of a Newtonian (22) (7 = const.) (37)
fluid with wall effects

One-dimensional isothermal
1D_c cross-channel flow of a (25) (7 = const.) (35), (42)
Newtonian fluid

Two-dimensional isothermal
2D_a recirculating cross-channel flow of a
Newtonian fluid

(19)-(21) ( = const.)

(an /ax - aVy /ax = O) (35)’ (36)/ (42)
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3.1. Flow Pattern and Pumping Capability

The relationship between the flow rate and pressure gradient of viscous fluid flows
has been of interest since long before the invention of screw viscosity pumps or plasticating
single-screw extruders. In 1868, Boussinesq [67] addressed the topic for a pure pressure
flow in narrow tubes. The first mathematical model of screw-type viscous pumps was
published anonymously in 1922 [68], and later extended by Rowell and Finlayson in
1928 [69], who investigated an isothermal flow of a Newtonian fluid. To simplify the
helical flow geometry, the screw pump was represented by a straight channel filled with
an incompressible viscous fluid and covered by a plate maintained at a steady motion.
The studies solved the combined drag and pressure flow for screw channels of both infinite
and finite widths, as described by the models in Table 1 (1D_a and 1D_b, respectively).

In the 1950s, these initial attempts to model screw pumps were rediscovered and
adapted to the characteristics of screw extrusion. It is little known that Maillefer [70] derived
solutions for the down-channel velocity profile. At around the same time, scientists at the
Polychemicals Department (E. I. du Pont de Nemours and Company, Wilmington, DE, USA)
extended the existing extrusion theory in several publications [19,71-75]. The groundwork
was laid by Carley and Strub [19], who reviewed the historical developments in the analysis
of extrusion flow. Later, Meskat [76] compared the existing solutions for the combined drag
and pressure flow, and demonstrated their equivalence. On the basis of the exact theory,
the down-channel velocity distribution subject to the equations and boundary conditions
in Table 1 (1D_b) can be described by [1]:

V.
vz (%, y) = i = Uy g — Vsp, (43)
,Z

where the velocity profiles resulting from drag and pressure are given as follows:

o 1 sinh( Y
vzld:% y 10 (% >sin(”“), (44)

2ol oy 8 & 1cosh(%(%_%)> ) (nny> (45)
h

-l % Rl i P n T w
2qvp, 0z \ W2 h w3 Gton cosh(“52)

The net flow rate is obtained by integrating the velocity distribution over the free
cross-sectional area [1]:

iwthb'ZFd iwb h3a£

o .
V=Vi=Vy 2 12y oz V (46)
low, & 1 (n nh)
F; = —tanh , 47
4T T n:%ﬁ n3 2wy, )
192h & 1 n 7T Wy
n=13,

The solution consists of two independent terms: (1) a drag flow, and (2) a pressure
flow. For Newtonian fluids, the net flow rate results from linear superposition of the
flow components, where F; and F), are the shape factors for the drag and pressure flows,
respectively. These parameters, which depend on the aspect ratio of the channel i /wy,
represent the distortion of the flow field in the vicinity of the flight. Figure 6 illustrates
down-channel velocity profiles for a pressure-generating, a pressure-neutral, and a pressure-
consuming flow. In all situations, the surfaces of the screw flights retard the motion of
the fluid.
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Figure 6. Dimensionless down-channel velocity distribution for a pressure-generating screw sec-
tion (a), a pressure-neutral screw section (b), and a pressure-consuming screw section (c).

To additionally cover the situation in which the screw channel is only partially filled,
Squires [77] solved Equation (22) by ignoring the pressure gradient and using the boundary
conditions in (38); he expressed the shape factor for the drag flow as a function of the
degree of filling f, where wy, r = wj, f.

Rw, 2 & 1 nmh
P = —a _— 4
4f 2 h n:;,?ﬁ 3 tanh(4f Wb) (49)

A simplified approach to predicting the flow in shallow screw channels (1/w;, < 0.1)
was proposed by Carley et al. [71]; omitting the effect of the screw flights, they solved the
combined drag and pressure flow between parallel plates in relative motion. This type of
flow is governed by the mathematical formulation in Table 1 (1D_b). In their simplified
theory, F; = F, = 1. The down-channel velocity profile is obtained from Equation (50):

_ Ve Yy L dp e
vz(y)_vb,z_h 2vp, 1 dz (yh y) (50)

The first analysis of transverse flow of a Newtonian fluid was published by Mohr et al. [74].
In this simplified theory, the transverse velocity profile in the channel center is described

by the equations and boundary conditions in Table 1 (1D_c). In the absence of leakage flow,
the cross-channel velocity profile is described by Equation (51):

vx(y) = va =2(37-2) (51)

Many years later, Kaufmann [78] developed a closed-form analytical solution for
the recirculating transverse flow. To avoid singularities in the top corners of the channel,
he omitted the velocity gradients dv,/dx and dv,/dx in his model, which is defined in
Table 1 (1D_d). In fluid mechanics, this type of flow is widely known as the lid-driven
cavity problem, which has been thoroughly studied [79-81]. An alternative approach
to describing the cross-channel flow in partially filled screw channels was proposed by
Marschik et al. [82].

Even for Newtonian fluids, a full description of the three-dimensional helical flow
pattern is a complex task. To gain a deeper understanding of the nature of the flows, Mohr
and Mallouk [75] combined the velocity profiles in Equations (50) and (51) to describe the
axial velocity profile in the middle of the channel.
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3.2. Dissipation and Power Consumption

The first attempt to mathematically describe the energy efficiency of a combined drag
and pressure flow was presented by Rowell and Finlayson in 1928 [69]. Later, Mallouk
and McKelvey [72] addressed the power requirements of melt extruders. On the basis of
the simplified theory as initially proposed by Carley et al. [71], they described the total
power as the sum of the power consumed in the screw channel and that dissipated in the
flight clearance. This theory was refined by Mohr and Mallouk [75] and Gore and McK-
elvey [83], who included the previously ignored transverse flow. McKelvey [73] introduced
calculation of the adiabatic melt temperature development for a temperature-dependent
Newtonian fluid, leading to a logarithmic melt temperature increase. Campbell et al. [84]
investigated the viscous dissipation rate of Newtonian fluids based on screw-rotation and
barrel-rotation theories.

The viscous dissipation rate (Equation (50)) is part of the energy equation, and for
polymer melt flows the main causes of melt temperature increase are their high viscosity
and low thermal heat conductivity.

QDiss =t:L (52)

Evaluation of the volume-specific viscous dissipation rate in the screw channel requires
the velocity profiles in Equations (50) and (51) to be differentiated and the results to
be applied to Equation (52). Integration over the cross-channel area yields the viscous
dissipation rate per unit of down-channel length.

2
Vi,z
; 53
R 53)

. v2 13 d 2
QDiss =w |j7 Z,Z + m (aZ) +4 Ul tan((Pb)z

The first term represents the viscous dissipation caused by the drag flow, the middle
term represents the pressure flow, and the last term represents the cross-channel flow
component. There are two possible approaches to determining the required drive power,
which lead to the same result. The drive power is the sum of the viscous dissipation rate
and pumping power, and can also be computed as the product of shear stress at the moving
wall and its velocity.

. oy -
Ppyive = QDiss + £ V=uw (Tyz|y:h Vb,z + Txy’y:h Vb,x) (54)
The drive power for the simplified Newtonian flow theory results in:

v2 hvyp,o vZ
PDrive =w [U Z’Z + Zb,Z £ +4 Ui tan((f)b)z % (55)

4. Numerical Approaches

The early theories of the melt-conveying zone in single-screw extruders analyzed
the flow of Newtonian fluids in screw channels of finite or infinite width. To gain more
insight into the conveying behavior of extruder screws, several researchers relaxed the
constant-viscosity assumption in the early 1960s. Efforts were directed towards numerical
analyses of more realistic flow situations including shear-thinning and non-isothermal
effects. The complexity and accuracy of the analysis increase when the non-Newtonian
flow behavior of polymer melts is included. Pseudoplastic behavior complicates the
mathematical model such that the governing flow equations must be solved numerically,
and exact closed-form analytical solutions are no longer possible. The viscosity being
dependent on the shear rate, the drag and pressure flows are coupled. For multidimensional
flows, complexity is increased further by the combined effect of shear in the down- and
cross-channel directions, which couples the flow components in these directions.



Polymers 2022, 14, 875

12 of 32

4.1. One-Dimensional Non-Newtonian Down-Channel Flows

Initially, numerical solutions were obtained for the isothermal down-channel flow of
a shear-thinning fluid between parallel plates [85-96]. Even for a one-dimensional fully
developed temperature-independent laminar flow of an incompressible power-law fluid
between two parallel plates, no exact closed-form analytical solution has been found to
date [7]. Details on this type of flow are provided in Table 2 (1D_d).

Table 2. Mathematical models of a one-dimensional down-channel flow of a power-law fluid.

Boundary

No. Flow Equations Conditions

One-dimensional isothermal down-channel
1b_d flow of a power-law fluid (16), (27), (31) 37)

One-dimensional isothermal down-channel (16), (22),(23)

1D_e flow of a power-law fluid with wall effects (Vx =vy=0 (37)
1D § One-dimensional non-isothermal (16), (18), (27), (37), (39),
- down-channel flow of a power-law fluid (30), (31) (40) or (41)

Several studies have presented analytical solutions for the combined drag and pres-
sure flow of power-law fluids based on a variety of mathematical approaches. All of
these require the integration constants to be evaluated numerically. Examples include ap-
proaches by Rotem and Shinnar [86], Clyde and Holmes-Walker [87], Weeks and Allen [88],
Kriiger [89], Kroesser and Middleman [90], Flumerfelt et al. [91], and Tadmor and Gogos [4].
A closed-form solution with a reduced accuracy at small down-channel pressure gradients
was derived by Rauwendaal [7]. Recently, Steller and Igwo [92] proposed approximate
equations for the integration constants.

The solution to the flow equation depends on the sign and the magnitude of the pres-
sure gradient, which affect the shape of the velocity and, thus, the shear-rate profile. In total,
results were presented for four types of flow condition, including pressure-generating and
pressure-consuming flows. Further distinctions were made based on the sign of the shear-
rate profile.

Using the finite-difference method, Roland and Miethlinger [93] solved a dimen-
sionless form of the model in Table 2 (1D_d), which was shown to be governed by two
physically independent dimensionless input parameters: (1) the power-law index 7, and
(2) a dimensionless down-channel pressure gradient I, ;; Figure 7 illustrates their effects
on the dimensionless flow rate Iy and the dissipation I1g.

For Newtonian fluids, the widely known linear relationship between flow rate and
pressure gradient is evident: for Il,. = 0 (drag flow), the curve satisfies [Ty = 1, while
for I1,. =1, the zero-throughput condition is fulfilled. The curve becomes increasingly
nonlinear and pressure-sensitive with decreasing power-law index. For a positive dimen-
sionless pressure gradient, the flow rate decreases with decreasing power-law index. The
opposite behavior is observed when the dimensionless pressure gradients become negative.
A minimum in dimensionless dissipation is given for pure drag flow conditions. In general,
the dimensionless dissipation increases if the pressure flow contributes to the flow charac-
teristics; that is, the higher the dimensionless pressure gradient, the more pronounced the
frictional heat generation.

For Newtonian fluids, the discharge rate results from linear superposition of a drag
and a pressure flow. Such a treatment is invalid for shear-thinning fluids, where the
flow components are interrelated and the fluid velocities are more complex than the
drag and pressure velocity profiles superimposed. Jacobi [10] applied the superposition
principle for shear-thinning fluids by introducing a power-law model in the pressure
flow term and adding it to the drag flow. The validity of this simplified approach was
examined by Kroesser and Middleman [90], who compared the relative errors between
numerical solutions of the combined drag and pressure flow and those resulting from the
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superposition principle. It was shown that, depending on the pressure characteristics of
the melt-conveying zone, linear superposition of the flows may cause substantial errors in
the prediction of the throughput.
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Figure 7. Influence of the power-law index on the fully developed one-dimensional down-channel
flow of a power-law fluid under isothermal conditions. The dimensionless volume flow rate Iy as a
function of the dimensionless pressure gradient I, (a), and the dimensionless dissipation Il as a
function of the dimensionless pressure gradient I, , (b).

All of the abovementioned numerical studies omitted the influence of the screw flights
on the down-channel flow. When wall effects are taken into account, the mathematical
problem, described by the equations and boundary conditions in Table 2 (1D_e), involves a
nonlinear partial differential equation. Wheeler and Wissler [97] and Palit and Fenner [98]
presented numerical solutions, using the finite difference and finite element methods,
respectively. Middleman [99] independently solved the drag and pressure flows of a power-
law fluid in a rectangular flow channel, and calculated shape factors for the drag and
pressure flows; for both flow components, he demonstrated that the rate-limiting influence
of the walls, as described by Equations (47) and (48) for Newtonian fluids, increases the
more shear-thinning the polymer melt. This effect was particularly pronounced for the
pure pressure flow.

When temperature effects are included, the complexity of the mathematical problem
increases further. Since velocity and temperature fields are coupled, the interconnected
influence of shear rate and temperature on viscosity must be considered. Colwell and
Nicholls [100] investigated a temperature-dependent flow of a non-Newtonian fluid be-
tween two parallel plates maintained at arbitrary temperatures. Taking viscous heat
generation and conduction into account, numerical solutions were presented for the tem-
perature and velocity profiles over the channel depth. For power-law fluids, the model is
defined by the equations and boundary conditions in Table 2 (1D_f).

4.2. Two-Dimensional Non-Newtonian Flows in Screw Channels of Infinite Width

The shear-thinning behavior of polymer melts couples the down- and cross-channel
flows via the viscosity function. The ratio between down- and cross-channel flows is
governed by the screw—pitch ratio ¢/ Dj. The greater the helix angle, the more pronounced
the transverse flow. After one-dimensional flows had been mostly worked out, efforts were
directed towards analysis of two-dimensional flows of shear-thinning fluids in infinitely
wide screw channels (Figure 4b). Solutions were obtained for both thermally fully devel-
oped and developing flows, whose equations and boundary conditions are summarized in
Table 3.
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Table 3. Mathematical models of a two-dimensional flow of a power-law fluid in a screw channel of
infinite width.

Boundary

No. Flow Equations Conditions

Fully developed two-dimensional
2D_b isothermal flow of a power-law fluid in a (16), (25)-(27), (29) (35), (37), (42)
screw channel of infinite width

Fully developed two-dimensional

2D ¢ non-isothermal flow of a power-law fluid  (16), (18), (25)—(29) (ﬁ)?),r(?zi)ll)(cs(i)é)
in a screw channel of infinite width © !
Developing two-dimensional flow of a (16), (18), (35), (37), (39),

2D_d power-law fluid in a screw channel of

infinite width (25)-(27), (29), (34) (40) or (41), (42)

4.2.1. Fully Developed Flows

Models of a hydrodynamically and thermally fully developed two-dimensional flow
of a power-law fluid under both isothermal and non-isothermal conditions have appeared
in various articles [93,101-106] and textbooks [3,7,14]; these types of flow are governed by
the models in Table 3 (2D_b and 2D_c, respectively).

The first major contribution that included non-isothermal, shear-thinning effects was
presented by Griffith [101], who ignored the effects of down-channel heat convection and
conduction, and assumed the temperature distribution along a streamline to be constant.
Furthermore, the temperatures of the barrel and screw surfaces were considered to be equal.
Griffith thus intended to counterbalance the absence of thermal cross-channel convection,
which takes place in real three-dimensional recirculating flows.

Similarly, Zamodits and Pearson [102] calculated screw characteristics for various
screw geometries and rheological parameters under both isothermal and non-isothermal
conditions; rather than following Griffith’s approach, they used an adiabatic temperature
boundary condition at the screw. Later, Steller [103,104] developed an alternative method
for predicting the flow of power-law and Ellis fluids in infinitely wide screw channels.
His algebraic expressions for the velocity profiles require numerical evaluation of the
integration constants, which were approximated recently by Steller and Igwo [92].

Roland and Miethlinger [105] investigated the usefulness of selected numerical tech-
niques in solving the nonlinear boundary value problem defined in Table 3 (2D_b). Analo-
gously to previous approaches [101,102], they solved a dimensionless form of the problem,
which was shown to depend on three physically independent dimensionless input pa-
rameters [93,106]: (1) the screw—pitch ratio t/Dy, (2) the power-law index #n, and (3) a
dimensionless down-channel pressure gradient I, .. Figures 8 and 9 illustrate the influ-
ences of these parameters on the dimensionless flow rate Iy and the dissipation I1g.

Comparing the results to the numerical solutions in Figure 7 reveals of the following
differences: (1) The drag flow at IT,. = 0 decreases with decreasing power-law index
and increasing screw—pitch ratio. The latter is a measure of the influence of the transverse
flow. Note that if transverse flow is ignored (t/D; = 0), the curves satisfy IIy = 1 at
Iy, = 0. (2) For positive and slightly negative dimensionless pressure gradients, the flow
rate decreases with increasing screw—pitch ratio; this behavior changes if a critical negative
pressure gradient is exceeded. (3) Viscous dissipation increases with increasing helix angle
of the screw.

4.2.2. Developing Flows

When the polymer melt is subjected to strong dissipation and conductive heating,
thermal convection in the down-channel direction becomes significant, and must be con-
sidered. Due to the temperature sensitivity of the viscosity, the local temperature change
additionally affects the velocity field, which was traditionally assumed to adjust instan-
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taneously to the local temperature field. Two-dimensional thermally developing flows of
power-law fluids in infinitely wide screw channels have been solved by many researchers,
including Yates [56], Fenner [107], Agur and Vlachopolous [108], Bruker et al. [109], and
others [110-112]. Details on the governing equations and boundary conditions are shown
in Table 3 (2D_d).
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Figure 8. Influence of the power-law index on a fully developed two-dimensional flow of a power-law
fluid in a screw channel of infinite width under isothermal conditions. The dimensionless volume
flow rate Iy as a function of the dimensionless pressure gradient I, , (a), and the dimensionless
dissipation Il as a function of the dimensionless pressure gradient I, ; (b).
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Figure 9. Influence of the power-law index on a fully developed two-dimensional flow of a power-law

p.z|'

fluid in a screw channel of infinite width under isothermal conditions. The dimensionless volume
flow rate I'ly as a function of the dimensionless pressure gradient I} ; (a), and the dimensionless
dissipation I as a function of the dimensionless pressure gradient I}, ; (b).

For a wide range of operating conditions, Equation (34) is parabolic in the z-direction,
which allows use of a marching technique to obtain the solution for the entire flow domain.
The procedure requires definition of an initial condition for the temperature at the inlet of
the screw channel, while no boundary conditions must be specified at the outlet. This tech-
nique fails to simulate the fluid flow when the down-channel velocity becomes negative,
as is the case for large back pressures or low throughputs. Solutions to these numerical
problems were presented by Elbirli and Lindt [113], and by Chiruvella et al. [114]. The for-
mer coupled the heat transfer and residence time characteristics of thermally developing
extruder flows to calculate stable solutions even under appreciable pressure backflow; the
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latter proposed two solution methods dealing with the same problem. One scheme was
based on including the down-channel thermal diffusion, making the problem elliptic, while
the other scheme used a different coordinate system.

4.3. Three-Dimensional Non-Newtonian Flows in Screw Channels of Finite Width

The infinite-channel-width assumption provides a reasonable approximation of the
screw geometry for shallow screw channels with small i /wj,. The transport processes in
extruders, however, are three-dimensional. In a screw channel of finite width (Figure 4a),
the screw flights generate a recirculating cross-channel flow. A major shortcoming of the
previously mentioned two-dimensional models is that the effect of the screw flights is
included by mass conservation considerations only, and the recirculating transverse flow
with two non-vanishing velocity components vy and vy is not captured. Especially for
deep metering channels, the screw flights may affect the flow pattern and heat transfer
significantly. To date, only a few studies have computed three-dimensional velocity and
temperature fields for both thermally fully developed and developing flows. An overview
of mathematical models of a three-dimensional flow of a power-law fluid is given in Table 4.

Table 4. Mathematical models of a three-dimensional flow of a power-law fluid in a screw channel of
finite width.

Boundary

No. Flow Equations Conditions

Fully developed three-dimensional
3D_a isothermal flow of a power-law fluid in (16), (19)-(22), (23) (35)-(37), (42)
a screw channel of finite width

Fully developed three-dimensional

3D_b non-isothermal flow of a power-law (16), (18), (19)—(23) (35)-(37), (39),

fluid in a screw channel of finite width (40) or (41), (42)

Developing thrfee-.dlmensmnal flow of a (16), (18), (19)~(22), (35)-(37), (39),

3D_c power-law fluid in a screw channel of (23), (33) (40) or (41, (42)
finite width ' orE

4.3.1. Fully Developed Flows

One of the first analyses of a hydrodynamically and thermally fully developed flow
of a power-law fluid in a metering channel of finite width was published by Martin [115];
using finite-difference techniques, he solved the model in Table 4 (3D_b) for various channel
aspect ratios.

Still retaining the isothermal assumption, Marschik et al. [116,117] recently trans-
formed the equations and boundary conditions in Table 4 (3D_a) into a dimensionless form,
showing that the model is governed by four physically independent dimensionless input
parameters: (1) the aspect ratio h/wy, (2) the screw-pitch ratio ¢/ Dy, (3) the power-law
index 1, and (4) a dimensionless down-channel pressure gradient Il .. The model was
then solved using the finite volume method to evaluate the dimensionless volume flow
rate I1y and the dissipation Il for various operating conditions, as demonstrated in
Figures 10 and 11.

The influence of the flight flanks is dominated by the aspect ratio of the screw channel
h/wy. For most pressure-generating and pressure-consuming flows, the flow rate decreases
with increasing aspect ratio. The rate-limiting effect is particularly pronounced in over-
ridden zones. In most standard extruder screws, the channel aspect ratio ranges from
0.05 < h/wy, < 0.15, and the restricting effect of the flights on the flow rate is limited. How-
ever, for more advanced extruder screws, such as barrier and wave-dispersion screws, the
ratio of channel depth to channel width may significantly exceed h/w;, > 0.15; in this case,
the screw flights substantially affect the velocity and temperature fields. Dimensionless
dissipation increases with increasing aspect ratio. The reason for this is that close to the
walls high shear and dissipation rates prevail, which becomes increasingly important for
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narrower channels. Especially for large negative pressure gradients, this effect is inverted
due to pronounced changes in flow rate.
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Figure 10. Influence of the power-law index on a fully developed three-dimensional flow of a power-
law fluid in a screw channel of finite width under isothermal conditions. The dimensionless volume
flow rate Iy as a function of the dimensionless pressure gradient I}, , (a), and the dimensionless
dissipation Il as a function of the dimensionless pressure gradient I, ; (b).
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Figure 11. Influence of the aspect ratio on a fully developed three-dimensional flow of a power-law
fluid in a screw channel of finite width under isothermal conditions. The dimensionless volume
flow rate Ily as a function of the dimensionless pressure gradient T, (a), and the dimensionless
dissipation I as a function of the dimensionless pressure gradient I}, » (b).

4.3.2. Developing Flows

Three-dimensional thermally developing flows of power-law fluids in screw channels
of finite width are governed by the equations and boundary conditions shown in Table 4
(BD_c). For a long time, solutions to this problem remained elusive due to numerical
instabilities caused by convection terms in the energy equation. With the advent of more
sophisticated numerical methods, a number of studies have been able to compute the
three-dimensional fluid flow and heat transfer with various boundary conditions.

Accounting for thermal convection in the down- and cross-channel directions, Syr-
jala [57,118,119] demonstrated the influence of the recirculating transverse flow on the
temperature distribution in the screw channel. The recirculatory motion of the polymer
melt conveys fluid particles from the region near the heated barrel down the channel
and back again. In combination with viscous heating effects, this mechanism reduces
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the temperature variation over the channel depth compared to a two-dimensional flow
in an infinitely wide channel. Further numerical results were presented by Lawal and
Kalyon [120], Sastrohartono et al. [121], and Ghoreishy et al. [122,123].

All of these theories used a constant barrel temperature and considered either isother-
mal screw surfaces or adiabatic boundary conditions. In all cases, the solution procedure
for the parabolized equation system was based on a finite element scheme in combination
with marching in the down-channel direction. The three-dimensional problem was thereby
reduced to a series of two-dimensional problems solved stepwise in each cross-channel
plane. A variety of methods were used to eliminate the numerical instabilities arising from
the dominant convection terms, such as the standard Galerkin finite element method and a
streamline upwind Petrov—Galerkin formulation.

5. Approximate Methods

In spite of their high relevance, the usefulness of numerical methods for practical screw
design is limited, as they are complex, often require high computational effort, and tend to
be time-consuming. Although recent progress in computer technology has pushed back
computational barriers to solving equation systems with various degrees of nonlinearity,
solving the complex flow conditions in single-screw extruders remains time-consuming,
especially when more realistic models are considered.

To remove the need for numerical techniques, several studies have proposed ap-
proximate methods for predicting the flow in metering channels by either (1) introducing
correction factors to the Newtonian pumping model described in Equation (46), or (2) de-
veloping new analytical regressions for various target variables. These methods typically
allow for faster analysis of the conveying behavior, and are therefore particularly useful in
design and optimization studies, in which multiple modeling setups are compared. For
these applications, the accuracy of approximate equations is often sufficient. In addition,
the use of cost-intensive simulation software can be avoided.

Most of these approaches were designed to approximate the numerical solutions for a
hydrodynamically and thermally fully developed flow of a power-law fluid under isother-
mal conditions. Approximations were developed for a one-dimensional down-channel
flow (Table 2, 1D_d), a two-dimensional flow in an infinitely wide channel (Table 3, 2D_b),
and a three-dimensional flow in a channel of finite width (Table 4, 3D_a). Figures 7-11
illustrate numerical results for these types of flow, while Table 5 presents an overview of
existing approximate methods. For detailed information on the flow conditions considered
in each case, see Section 4.

Table 5. Overview of approximate methods based on correction factors or analytical regressions.

Year Author Target Variables Flow Situation Section
1969 Kriiger Flow rate 1D_d Section 4.1
1981 Potente Flow rate and power consumption 1D_d Section 4.1
1981 Booy Flow rate 2D_b Section 4.2.1
1983 Potente Flow rate and power consumption 2D b Section 4.2.1
1986 Rauwendaal Flow rate 2D b Section 4.2.1
1995 Kim and Kwon Flow rate 3D_a Section 4.3.1
1996 Effen Flow rate 2D_b Section 4.2.1
1999 Obermann Power consumption 3D_a Section 4.3.1
2011 Spalding and Campbell Flow rate 3D_a Section 4.3.1
2017 Pachner et al. Flow rate 2D_b Section 4.2.1
2017 Marschik et al. Flow rate 3D_a Section 4.3.1
2018 Roland and Miethlinger Viscous dissipation 1D_d and 2D_b Section 4.1/Section 4.2.1
2019 Roland Flow rate 1D_d Section 4.1
2019 Roland et al. Flow rate and viscous dissipation 2D_b Section 4.2.1
2019 Roland et al. Viscous dissipation 3D_a Section 4.3.1
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Pioneering theories were published by Kriiger [89] and Booy [124], who presented
a method for selecting an effective viscosity for the pressure flow term in the Newtonian
pumping model. While the former used numerical results obtained for the one-dimensional
down-channel flow of a power-law fluid under isothermal conditions, the latter extended
the analysis to two-dimensional flows in infinitely wide screw channels. Effective viscosity
is the Newtonian viscosity that yields the same performance as if power-law fluids were
used. A refined approach was presented by Rauwendaal [7,125], who derived correction
factors for the drag and pressure flows, which can be applied to pressure-generating
metering zones with helix angles of 15° < ¢;, < 25°. Similarly, Rauwendaal approximated
the numerical results for a two-dimensional flow.

A similar method was presented by Spalding and Campbell [6,126], who proposed a
correction factor for the drag flow based on their numerical results for a three-dimensional
flow. Since the pressure flow term remained unmodified, this approach leaves some matters
unaddressed. Kim and Kwon [127] suggested a different approach to determining screw
characteristic curves for three-dimensional flows with the aid of a total shape factor defined
by the ratio of numerically determined three- and two-dimensional flow rates. Although
the work provides numerical solutions for the shape factor, an analytical approximation is
only available for a Newtonian fluid.

Another method was proposed by Potente [128,129]; using numerical solutions ob-
tained for various flow situations, he derived analytical regressions to estimate the flow rate
and power consumption of the metering zone. Initially, approximations were developed
for the one-dimensional down-channel flow of a power-law fluid under isothermal condi-
tions [128]. Later, the regressions were improved to predict the flow in a screw channel of
infinite width [129]. While the throughput approximation is valid for dimensionless flow
rates of 0.55 < Iy < 1.45 and pitch angles of 0° < ¢, < 17.65°, the power consumption
approximation holds for dimensionless flow rates of 0.55 < ITy < 1.25.

Potente’s regressions were further refined in two PhD theses: Effen [130] extended
the application range of the throughput model by considering dimensionless flow rates
of 0.1 < IIy < 2.0, power-law indices of 0.2 < n < 1.0, and screw—pitch ratios of
0.8 <t/Dy <2.0. A drawback of this approach is that the regression coefficients depend
on the input parameter values, causing the model to exhibit undefined and discontinuous
regions. Obermann [131,132] developed a more accurate model of the power consumption
by approximating numerical results for a three-dimensional flow.

To provide melt-conveying models that are continuous across their full application
range, we have recently proposed a hybrid modeling approach [133]. The novelty of
our method lies in the construction of analytical approximation equations from a large
number of numerical solutions to scaled flow equations by using symbolic regression
based on genetic programming. Unlike other regression techniques, such as linear or
polynomial regression, this modeling approach requires neither the model’s structure nor
its parameters to be predefined. Rather, the approach applies evolutionary computation
methods to uncover mathematical relationships based on comprehensive datasets. The
usefulness of this modeling approach was demonstrated for various polymer-processing
problems [134,135].

Roland [136] proposed approximate equations for flow rate and viscous dissipation,
taking a one-dimensional flow of power-law fluid into account. Pachner et al. [137] and
Roland and Miethlinger [93] each presented analytical regressions for a two-dimensional
flow. The throughput model is valid for 02 < n < 09, 075 < t/D, < 2.0, and
0 < IIy < 2.0, while the dissipation model holds for 0.2 < n < 1.0,0.5 < t/D; < 2.0,
and 0 < IIy < 2.0. Roland et al. [106] further optimized the equations to additionally
include screw sections subjected to large negative dimensionless pressure gradients, as
typically found in strongly overridden wave- or energy-transfer screws. These optimized
models for the flow rate and dissipation are valid for 0.2 <#n <1.0,0.6 < t/Dj, <24, and
1.0 < I, < variable. The upper boundary for the dimensionless down-channel pressure
gradient was adjusted case by case to exclude negative volume flow rates (ITy ,;;, > 0).
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Using the same methodology, Marschik et al. [116,138,139] and Roland et al. [117]
approximated the numerical solutions for the flow rate and viscous dissipation of a three-
dimensional flow of a power-law fluid. The approximate equations take into account
the shear-thinning flow behavior of the polymer melt, the influence of transverse flow,
and the effect of the screw flights. The regression models are valid for 0.2 < n < 1.0,
0.5 <t/Dy <2.0,and 0.05 < h/wy, < 0.5. Similar to the previous approach, the range
of the dimensionless down-channel pressure gradients was adjusted as a function of the
power-law index. The validity of the two- and three-dimensional melt-conveying models
was tested against experimental extrusion data measured for both standard and high-
performance screws [140-142]. Recently, the usefulness of the symbolic regression analysis
was analyzed in a comparative study that investigated various data-based modeling ap-
proaches [143].

While all of the aforementioned approaches analyzed polymer melt flows under
isothermal conditions, a few studies [144-147] have proposed a lumped-parameter method
for approximating the axial temperature along the extruder screw. Rather than resolving
spatial parameter variations over the cross-section, this method divides the screw channel
into short axial segments, in which a lumped form of the energy equation based on a mean
melt temperature is solved.

To demonstrate the validity of the selected approximation methods, we compared
their accuracy in predicting numerical solutions for the flow rate Iy obtained for a three-
dimensional flow of a power-law fluid in a screw channel of finite width, as mathemati-
cally described in Table 4 (3D_a). Table 6 provides an overview of the three-, two-, and
one-dimensional approaches investigated in this study. Ignoring the effect of the shear-
thinning flow behavior, the sixth approach is the Newtonian pumping model given in
Equation (46). Except for the first method, which inherently considers the effect of the
flight flanks, all remaining models were additionally corrected by using the shape factors
in Equations (47) and (48). This step required the nonlinear regressions in the fourth and
fifth approaches to be linearized.

Table 6. Overview of the three-, two-, and one-dimensional modeling approaches compared.

Flow

No. Model Literature . . Section Modifications
Situation

1 Marschik et al. [116] 3D_a Section 4.3.1 -

2 Rauwendaal [125] 2D b Section4.2.1  Shape factors
3 Effen [130] 2D b Section 4.2.1  Shape factors
4 Roland et al. [106] 2D_b Section 4.2.1  Shape factors
5 Roland [136] 1D_d Section 4.1 Shape factors
6 Newtonian pumping model [1] 1D_b Section 3.1 Shape factors

The prediction accuracy of the approximations in Table 6 was evaluated by using
the dataset generated in the construction of our throughput model [116]. Considering the
different scopes of the methods, this dataset was subdivided into three subsets according
to the validity ranges of the models. Each of these consisted of numerous physically inde-
pendent design points defined by n, t/ Dy, h/wy, I1p,., and the corresponding numerical
solution for I1y. For each setup, we additionally applied the approximations in Table 6 to
estimate the flow rate.

Table 7 illustrates the parameter ranges of the datasets and the approximate methods
applied in each case. For all datasets, the upper boundary for I}, . was adjusted case by case
to avoid negative volume flow rates (ITy ,,;;, > 0). The first dataset is based on the scope of
the three-dimensional approach (Model 1), and includes 77,411 design points. The second
and third datasets were obtained by restricting the ranges of t/D;, and Iy according to
the validity ranges of Effen’s and Rauwendaal’s methods (Model 3 and Model 2), yielding
57,025 and 26,571 design points, respectively.
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Table 7. Overview of the parameter ranges of the datasets and the models used in each case.

No. n t/Dy, hlwy, I, , IIy Models
Dataset 1 0.2-1.0 0.6-2.0 0.05-0.5 —1.0-var. - 1,4,5,6
Dataset 2 0.2-1.0 0.8-2.0 0.05-0.5 —1.0-var. 0.1-2.0 1,3,4,5,6
Dataset 3 0.2-1.0 0.84-1.46 0.05-0.5 —1.0-var. 0.1-2.0 1-6

Table 8 illustrates the accuracy of the approximate methods by comparing (1) mean
absolute errors between the numerical and approximated results (M AE), and (2) coefficients
of determination (R?). Including the shear-thinning flow behavior, the effect of transverse
flow, and the influence of the flight flanks, Model 1 shows the highest accuracy in the
prediction of the numerical solutions. Significant differences in the quality measures are
observed in the case of the two-dimensional methods. While Model 4 performs well for all
datasets, Model 3 exhibits pronounced errors in the approximation of the three-dimensional
flow. Differences between Model 1 and Models 2—4 are caused by the specific way in which
the influence of the screw flights is considered. While the two-dimensional methods apply
the shape factors originally developed for Newtonian fluids, Model 1 inherently includes
the influence of the shear-thinning flow behavior on the wall effects. Prediction accuracy is
further decreased if the effect of transverse flow is ignored (Model 5) or Newtonian flow
behavior is assumed (Model 6).

Table 8. Quality measures of the approximations: mean absolute error (MAE ) and coefficient of
determination (R?).

No. Model Dataset 1 Dataset 2 Dataset 3
_ MAE 0.00719 0.00673 0.00555
1 Marschik et al. R2 0.99973 0.99967 0.99980
MAE - ; 0.05290
2 Rauwendaal R2 ) ) 0.97291
MAE - 0.10934 0.18908

3 Effen R2 - 0.02351 —1.07304
MAE 0.02681 0.02465 0.02363
4 Roland et al. R2 0.99433 0.99244 0.99344
MAE 0.11079 0.09800 0.09974
5 Roland R2 0.90623 0.90105 0.99344
6 Newtonian pumping model  MAE 0.17595 0.14418 0.14149
R2 0.83683 0.84890 0.85426

6. Leakage Flow

The effect of the flight clearance on fluid flow and heat transfer in the metering zone
has been investigated since the earliest studies of screw pumps. For conventional extruder
screws, a typical value of the flight clearance is 0.1% of the barrel diameter (6 = 0.001 Dy).
This rule is invalid in the case of high-performance screws, as their screw flights are often
strategically undercut in order to promote transverse mixing. In this case, leakage flow was
shown to play a significant role in the analysis of melt-conveying zones.

The first Newtonian theory to account for the effect of the flight clearance was pub-
lished anonymously [68], and later revisited by Rowell and Finlayson [69], Carley and
Strub [19], and Carley et al. [71]; using the same approach, they approximated the annular
clearance between flight land and barrel surface using two parallel plates, and assumed the
leakage flow to be a pressure flow through an infinitely wide slit. The rate of leakage flow
was then subtracted from the net rate of discharge obtained from the traditional Newtonian
pumping model in Equation (46).

Gore and McKelvey [83] included the effect of the flight clearance on the drag flow by
using an effective channel depth in the integration of the down-channel velocity. At the
same time, Mohr and Mallouk [75] refined the existing theories by additionally considering
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the drag-induced cross-channel pressure gradient. A complete description of the Newto-
nian analysis was given by Tadmor and Klein [1]. Ignoring the rate-limiting influence of
the screw flights, the total output can be obtained from Equations (56) and (57):

. iwyhv 0 iw, 3 d
V—"zb'z(l—h)— oy g 1) (56)
e \[61vp(h=0) | 14e/wy
fL — (5)3677 + (1 + wb) [ 3 dp/dz + tllﬂZ((Pb):| (57)
h) wy nf 3L

M (h
1+ 7(3) wy

Including the shear-thinning flow behavior of polymer melts, Rauwendaal et al. [148,149]
presented a numerical analysis of leakage flow based on the finite difference method. To
analyze the effect of the flight clearance on the overall flow behavior, they coupled the flows
in the metering channel and in the flight gap by correcting the condition for the net cross-
channel flow in (42). Assuming a fully developed isothermal flow of a power-law fluid,
both problems were treated as a two-dimensional flow in an infinitely wide channel. The
effect of the leakage flow on the throughput was large for highly shear-thinning polymer
melts and pronounced flight clearances (6 = 0.004 Dy,). For a power-law fluid with n = 0.3,
the drag flow rate and the maximum pressure-generating capability decreased by roughly
7% and 20%, respectively, when the flight clearance was increased from J = 0.001 Dy, to
0 = 0.004 Dy. Note that the former represents a typical value of the flight clearance in
standard screws, while the latter can be found in more advanced screw designs. For a
Newtonian fluid, in contrast, the throughput was lowered by ~10% at medium values of
the pressure gradient for the same settings. The velocity profiles in the flight gap were
almost linear for a Newtonian fluid, while the contribution of the pressure gradients to
the leakage flow was significant for fluids with small power-law indices. Furthermore, the
total power consumption of the screw was shown to be affected considerably by the power
consumption in the flight clearance.

Taking non-isothermal effects into account, Meyer et al. [150] investigated the tem-
perature development in the flight clearance. Assuming a drag flow between two parallel
plates maintained at isothermal temperatures, they showed that for both Newtonian and
power-law fluids the thermal development length is generally smaller than the available
gap length. In the prediction of the velocity and temperature profiles at the exit of the
clearance, convective heat transport can therefore be ignored, and the flow can be treated
as thermally fully developed.

To examine the influence of leakage flow on the temperature distribution in the
screw channel, Pittman and Rashid [151] numerically studied the heat transfer in the two-
dimensional recirculation flow over the channel cross-section of a twin-screw extruder.
In their simplified approach, the influence of the down-channel velocity component was
omitted. Alongside viscous heat generation and heat transport by conduction and con-
vection, the authors included the sensitivity of the viscosity to shear rate and temperature
using a temperature-dependent power-law model. To specify the flow conditions in the
leakage gap, a drag flow velocity profile was considered. The governing flow equations
were solved using the finite element method.

Rauwendaal [152] expanded on the two-dimensional theory by including the previ-
ously ignored down-channel velocity component; similarly, he investigated the influence
of screw geometry, materials, and processing conditions on the velocity, pressure, and tem-
perature fields in the screw channel using the finite element method. The convective term
in the energy equation was stabilized by a streamline upwind Petrov—Galerkin formulation.
The results showed that the melt temperatures are lower in the flight clearance than in the
screw channel, since the high level of viscous heat generated in the clearance is conducted
away to the barrel due to its close proximity. In addition, the maximum temperature and
the area of the high-temperature region in the channel were shown to increase with larger
flight clearance.
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Recently, we solved a local formulation of the two-dimensional isothermal flow of a
power-law fluid through the flight clearance [153]; using the shooting method, our analysis
evaluated flow rate and dissipation in the leakage gap for a variety of screw designs and
processing conditions.

7. Curved Channel Systems

For shallow screw channels with low //Dj, the error introduced by the flat-plate
approximation is small (Figure 4). The influence of the channel curvature can therefore be
ignored without a significant loss in prediction quality. Closer attention must be paid to
deep melt channels with pronounced /Dj,. In this case, the predicted conveying behavior
might be affected substantially by the choice of reference system. A number of studies
analyzed the influence of channel curvature on the flow of both Newtonian and power-law
fluids [37,43,44,154]. A comparison of various channel configurations showed that while
the error of the flat-plate approximation amounts to up to 10% for shallow screw sections
(h/ Dy = 0.05), the flattened channel representation can give rise to errors greater than 30%
for deep channels (h/D; = 0.30), depending on the shear-thinning nature of the polymer
melt and the magnitude of the pressure gradient.

To account for the effect of channel curvature, approaches were introduced for deep
channels that are based either on cylindrical polar or helical coordinates. One of the first
theoretical approaches that avoided the flat-plate model was presented by Squires [20], who
derived a correction factor for the drag flow in the traditional Newtonian pumping model
(Equation (46)), which is valid for the limiting case of zero helix angle and infinite aspect
ratio. Booy [155] extended the theory by including the effect of helix angle and its variations
with the radius; his model consisted of a screw channel bounded by the cylindrical barrel
and screw root surfaces, as well as by the two sides of a helical flight. Assuming a fully
developed flow in an infinitely wide channel, Booy solved the governing flow equations
with two non-zero-velocity components in the tangential and axial directions, defined in
cylindrical polar coordinates. To consider the effect of both channel curvature and helix
angle, correction factors for the drag and pressure flows in the traditional melt-conveying
model were computed. Tadmor and Klein [1] additionally provided drag and pressure
shape factors for the tangential flow of Newtonian fluids.

While most of the aforementioned analyses were based on the constant-viscosity
assumption, later studies included the shear-thinning flow behavior of polymer melts
based on various mathematical approaches [156-161]. Using the finite difference method,
Dyer [156] investigated a three-dimensional non-isothermal flow of a temperature-dependent
power-law fluid in a curved screw channel in the absence of leakage flow. Steller [157]
presented models for a fully developed flow of an Ellis fluid in a curved screw channel
under both isothermal and non-isothermal conditions. Since the channel was assumed
to be infinitely wide, the flow was considered to be two-dimensional, with two non-zero-
velocity components in the tangential and axial directions. In this non-isothermal theory,
viscous dissipation, heat conduction in the radial direction, and heat convection in the
tangential direction were included. Both of these studies [156,157] defined the governing
flow equations in cylindrical polar coordinates.

Lim et al. [158] proposed a partial periodic unit technique in combination with the
finite element method to reduce the computational time for a three-dimensional flow
of a power-law fluid in a helical screw channel. Spalding et al. [159] carried out three-
dimensional finite element simulations for a helical metering section, considering combined
drag and pressure flow. Conzen [160] performed similar investigations using the finite
volume method.

Several studies have used a helical coordinate system to analyze the flow of polymer
melts in deep, curved screw channels [27-36]. Equivalent definitions of a non-orthogonal
helical coordinate system were presented by Zamodits [27] and Tung and Lawrence [28];
while the former was applied to model curved extruder screws, the latter was used for static
mixers. Nebrensky et al. [29] set up a variational formulation of a developed flow and heat
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transfer in a single-screw extruder as a two-dimensional problem. A function applicable to
non-isothermal flows of generalized Newtonian fluids was expressed in a non-orthogonal
helical coordinate system. Hami and Pittman [30] solved the variational problem for an
isothermal Newtonian flow for both shallow and deep channels using the finite element
method. Choo et al. [31] extended the analysis by providing finite element predictions for
an isothermal flow of power-law fluids. Wang and Andrews [32] formulated the equations
of continuity and motion in an alternative helical system, and used the finite difference
method for solving fully developed flows of Newtonian fluids. Blyth and Pozrikidis [33]
performed a perturbation analysis in non-orthogonal helical coordinates to independently
analyze the drag and pressure flows in curved screw channels.

Introducing further physical simplifications, Sanjabi et al. [34,35] mathematically
described the three-dimensional helical flow of a temperature-dependent power-law fluid
in extruders. The governing flow equations, which additionally account for tapered screw
sections, were first developed in cylindrical polar coordinates, and then transformed into
a helical system. Solutions were computed with the aid of an iterative computational
algorithm based on the shooting method. Combing helical coordinates with viscoelastic
flow behavior, Vachagina et al. [36] simulated a non-isothermal flow of a Giesekus fluid
flow in the melt-conveying zone of a single-screw extruder.

8. Conclusions

We have reviewed the developments in the modeling and simulation of the melt-
conveying zones of single-screw extruders from a methodological perspective. The melt-
conveying process is a critical processing step in a variety of extrusion operations, and has
therefore received significant attention in the literature. Since the 1920s, the complexity
and accuracy of melt-conveying models has increased significantly, as the constraints
of traditional modeling assumptions and simplifications have been increasingly relaxed.
This progress has come in tandem with developments in computer power and more
sophisticated modeling techniques. Assuming a fully developed steady-state laminar flow
of an incompressible fluid, the first analyses provided closed-form analytical solutions for
the conveying behavior of Newtonian fluids with temperature-independent viscosity. Using
numerical methods, latter step-by-step studies included the effect of the shear-thinning and
non-isothermal behavior in one-, two-, and three-dimensional flows in channels of both
infinite and finite widths.

Numerous flow situations based on various geometric and physical conditions have
been analyzed. While the solution methods—including analytical, numerical, and approxi-
mate approaches—have changed over the years, the mathematical models are still set up
using the conservation equations of mass, momentum, and energy in combination with
constitutive equations and boundary conditions. Historically, most theories treated the
polymer melt as a purely viscous shear-thinning fluid, and approximated the helical screw
channel using the flat-plate model. While these assumptions yield reasonable results for a
variety of processing conditions, they fail to deliver accurate solutions when more complex
materials (e.g., filled polymers or polymer suspensions) and screw geometries (e.g., bar-
rier or wave-dispersion screws) are considered. A thorough understanding of these flow
situations would require computational analysis of helical extruder channel flows based
on advanced material models that include viscoelastic flow behavior and wall-slippage
effects. While some of these problems have already been discussed for selected boundary
conditions in the literature [50-52,58-66], their analysis often remains restricted by the
computational power available.

From a methodological viewpoint, the existing melt-conveying models can be clas-
sified into exact analytical, numerical, and approximate approaches. Depending on the
problem at hand, all of these provide specific advantages and disadvantages. Analytical
solutions are usually stable and fast to compute. Since parameter dependencies are often
expressed explicitly, they provide a clear view of how input parameters affect target vari-
ables; as a result, they are particularly useful in design and optimization studies. While
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exact analytical solutions were only obtained for Newtonian fluids, approximate solutions
were constructed for all types of temperature-independent shear-thinning flows. The latter
were often presented in the form of correction factors or regression models, which can also
be combined to simultaneously consider various effects within one approach (e.g., the influ-
ence of flight flanks and leakage flow). Numerical results, in contrast, are given by discrete
values rather than complete mathematical expressions. A major advantage of numerical
methods is their capability of handling large equation systems with different degrees of
nonlinearity; in contrast to their counterparts, they allow a more accurate assessment of the
flow phenomena in the screw channel.

Although most melt-conveying models were originally designed for single-screw
extruders, some of them may also be applied to injection molding machines. In this case,
the velocity boundary conditions must be rewritten to include the axial retraction speed of
the screw, as suggested in [117].

Despite the vast amount of literature, more research must be carried out in order
to achieve the goal of accurately predicting the conveying characteristics of single-screw
extruders. Further sophisticated numerical computations of three-dimensional flows with
more realistic conditions are required in order to increase our understanding of the trans-
port processes. These especially include non-isothermal developing flows and partially
filled systems.

A drawback of most shear-thinning theories is the power law used in the modeling
of the viscosity behavior. Since this approach works well only within a certain range of
shear rates, more sophisticated multiparameter models must be used to accurately predict
the viscosity behavior of the polymer melt in both the Newtonian and the shear-thinning
regimes. Even in conventional screw designs, the flow field is subject to shear rates ranging
over several orders of magnitude, taking the diverse channel depths in the screw channel
and in the flight clearance into account. These variations are typically not captured by the
power law. To remove its limitations, numerous viscosity functions of increased complexity
are available in the literature [4]. Examples include the Carreau—Yasuda model, the Cross
model, or the Ellis model. For most conditions, these models provide a more accurate
representation of the viscous flow behavior.

A fundamental shortcoming of the traditional melt-conveying models is that the
polymer melt is assumed to be completely in a liquid phase. This assumption may be valid
in the vicinity of the screw tip, while it must be critically readdressed for the remaining
sections of the screw. Due to an incomplete melting process, solid and liquid materials may
coexist side by side at the beginning of the melt-conveying zone. As a result, the polymer
melt contains small portions of solid fragments that are trapped within the liquid phase.
The influence of solid particles on the polymer melt flow is the topic of current research
activities. Of particular interest are multiphase simulations of the liquid-solid mixture
based on computational fluid dynamics (CFD), in which the solid material is represented
by a highly viscous fluid.

A rather new but powerful method for deeper insight into liquid—solid multiphase
flows requires the coupling of CFD and the discrete element method (DEM). The latter
is widely accepted in the field of granular mechanics, and has already proven useful in
the analysis of solids conveyed in single-screw extruders [162,163]. A coupled CFD/DEM
approach can resolve both solid-solid and solid-liquid interactions and, hence, offers
a promising method for predicting the flows of molten und unmolten materials. The
usefulness of this modeling approach is not restricted to metering channels; rather, it offers
great potential for a better understanding of all functional zones.

In addition to solving more complex mathematical models, there is an increasing
need for further fast and accurate approximation methods. Removing the need for time-
consuming and computationally expensive numerical methods, these techniques reduce
calculation time, which is crucial in many time-critical applications. While existing equa-
tions were mainly designed to estimate the flow rate and viscous dissipation, further
attention must be directed towards parameters such as the power consumption, tempera-
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ture development, and mixing capability. Recent studies have demonstrated how analytical
approximations constructed for screw channels of constant geometry can be implemented
into a network-based approach to model the axial pressure and temperature development
of both conventional and high-performance screws [140,142,164]. The development of
new approximation methods will be promoted by the advent of data-based modeling and
artificial intelligence. These techniques significantly extend the set of tools available to
approximate large sets of experimental or simulation data (e.g., neural networks, decision
trees, etc.).
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Nomenclature

ag Temperature shift factor v Characteristic velocity

Cp Specific heat capacity (constant pressure) v, Barrel velocity

Cy Specific heat capacity (constant volume) vy , Barrel velocity in the x-direction
Br Brinkman number V2 Barrel velocity in the z-direction
Dy, Barrel diameter \' Velocities

D Screw core diameter v Velocity vector

D Rate-of-deformation tensor 14 Volume flow rate

e Flight width v, Drag flow rate

f Degree of filling Vp Pressure flow rate

fr Correction factor for leakage flow wy Channel width at barrel surface
F; Shape factor (drag flow) wy,r  Width of filled channel

Faf Shape factor (drag flow), partially filled ~ wy,; Width of unfilled channel

Fy Shape factor (pressure flow) X Cross-channel coordinate

g Gravity vector y Up-channel coordinate

h Channel depth z Down-channel coordinate

i Number of screw flights V4 Unwound length

K Consistency « Temperature coefficient

L Characteristic length 6 Flight clearance

L Velocity gradient tensor v Shear rate

MAE Mean absolute error N Viscosity

n Power-law index 0y Viscosity in the flight clearance
N Screw speed A Heat conductivity

R? Coefficient of determination (7 Dimensionless velocity (drag flow)
Re Reynolds number v; Dimensionless velocities
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p Pressure Up Dimensionless velocity (pressure flow)
Ppyive  Drive power I pi Dimensionless pressure gradients
Pe Péclet number Il  Dimensionless dissipation
9piss  Viscous dissipation I,  Dimensionless flow rate
t Screw pitch 0 Density
T Temperature Tij Shear stresses
To Reference temperature T Stress tensor
T, Barrel temperature @p Pitch angle
Ts Screw temperature
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