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1 | INTRODUCTION

| Wolfgang Roland?

Abstract

There are many industrial examples of low Reynolds number non-Newtonian
flows through rectangular ducts in polymer processing. They occur in all types
of manufacturing processes in which raw polymeric materials are converted
into products, ranging from screw extrusion to shaping operations in dies and
molds. In addition, they are found in numerous rheological measurement sys-
tems. The literature provides various mathematical formulations for non-
Newtonian flows through rectangular ducts, but—if not simplified further—
their solution usually requires use of numerical techniques. Removing the
need for these time-consuming techniques, we present novel analytical correc-
tion factors for the drag and pressure flows of power-law fluids in rectangular
flow channels. We approximated numerical results for a fully developed flow
under isothermal conditions using symbolic regression based on genetic pro-
gramming. The correction factors can be applied to the analytical theory that
describes the flow of power-law fluids between parallel plates to include effects
of the side walls in the prediction of flow rate and viscous dissipation.
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in a straight rectangular channel, the analyses provided
exact analytical solutions for the flow rate.

The analysis of polymer-melt flows in rectangular ducts
has been the subject of many studies. Numerous flow situ-
ations of various physical complexities have been formu-
lated mathematically and solved based on different
solution methods. The most prominent examples can be
found in a variety of textbooks.!"™ For rectangular ducts,
pure pressure flow was first addressed by Boussinesq,!”!
while the first mathematical model of a combined drag
and pressure flow was published anonymously!®! and later
extended by Rowell and Finlayson”J and Maillefer.'®!
Assuming the flow of an incompressible Newtonian fluid

The complexity of the mathematical model increases
when the shear-thinning behavior of polymer melts is
included, as the dependency of viscosity on shear rate leads
to nonlinear differential equations. For rotationally sym-
metric geometries, such as pipes and annular gaps, the flow
can be described by an ordinary differential equation with
one independent variable. For rectangular ducts, in con-
trast, the problem cannot be reduced to one dimension
without any further simplifications. Even for a purely vis-
cous fluid, the mathematical problem involves a partial dif-
ferential equation, solving which requires in most cases use
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of numerical methods. Middleman!®! applied a finite differ-
ence scheme to independently solve the drag and pressure
flows of a power-law fluid in a rectangular duct. He further
provided shape factors for selected processing conditions to
demonstrate the influence of the side walls on the dis-
charge rate. Later, Wheeler and Wissler''”! and Palit and
Fenner! ! computed the combined drag and pressure flow
for power-law fluids based on the finite-difference and
finite-element methods, respectively. To include polymers
with Newtonian plateau at low shear rate, Sochi''?! devel-
oped analytical solutions for the flow of Carreau and Cross
fluids in thin slits, which require a numerical procedure to
determine the shear rate at the channel wall.

Although recent progress in computer technology has
pushed back computational barriers to numerically solv-
ing increasingly complex flows, the need remains for fast
exact or approximate analytical solutions. Avoiding time-
consuming and computationally expensive numerical
techniques, analytical equations significantly reduce cal-
culation time and are therefore particularly useful in
time-critical applications such as practical design and
optimization tasks. One approach to removing the need
for numerical methods is to apply correction factors to
the existing analytical theory available for basic geome-
tries. Assuming the flow of a Newtonian fluid, Rauwen-
daal*?! approximated the exact closed-form analytical
solution for a combined drag and pressure through a rect-
angular duct to derive shape factors for the drag and pres-
sure flows in the form of linear functions:

h

far=1-0571_, (1)
h

fpr=1-0625_. (2)

These expressions were developed for typical values
of the aspect ratio of metering channels in single-screw
extruders (h/w < 0.6). Focusing on the pressure flow of
power-law fluids through rectangular ducts, a few
authors proposed correction factors to include wall effects
in the prediction of the flow rate or pressure drop. Schen-
kel ! developed a set of analytical approximations
for different aspect ratios. Similarly, K&pplmayr and
Miethlinger[15J introduced a correction factor using a
second-order polynomial function (Equation 3), whose
coefficients depend on the power-law index.

2
fp,Ka(%> +b%+c (3)

In contrast, White and Huang!'®! (Equation 4) intro-

duced generalized relationships for the correction factor

that are continuous across their whole applications
range. While the theories presented in Rauwendaal,
Schenkel and White and Huangm’m’16J proposed correc-
tions to the flow rate, Equation (3) was designed to adjust
the pressure drop. Lang and Michaelil'”! derived correc-
tion functions to include ducts of irregular cross section.

Fow= - (4)

1/n’
1/3 gh/w
(1 + n2 w/h )

We have developed new analytical correction factors
for the flow of a power-law fluid in rectangular channels
of finite width. Particular attention was paid to the calcu-
lation of the flow rate and viscous dissipation of a drag
flow and a pressure flow. Numerical simulations were
carried out for a fully developed flow under isothermal
conditions. The primary aim was to approximate the dif-
ference between (i) numerical solutions obtained for the
flow in finite channels and (ii) exact analytical results
available for the flow in infinite channels by using sym-
bolic regression based on genetic programming. The cor-
rection factors can be applied to account for the effects of
the side walls in predicting the volume flow rate and the
viscous dissipation of drag and pressure flows in rectan-
gular ducts. These flows can be found in a variety of
polymer-processing machines including most promi-
nently screw extrusion, dies, and molds. Avoiding numer-
ical methods, the correction factors were designed to
increase prediction accuracy in the analysis of drag and
pressure flows in a broad range of equipment. Applica-
tion fields range from design and optimization to trouble-
shooting tasks.

2 | ANALYTICAL MODELING

2.1 | Problem definition

In the first step, we derive the governing equations for
the flows under investigation. Let us consider a straight
rectangular duct of width w and height h with Cartesian
coordinates oriented as shown in Figure 1. Two physical
conditions are investigated: (i) a drag flow, where the
upper plate moves in the down-channel direction z at
velocity vp; and the pressure difference between channel
inlet and outlet is zero, and (ii) a pressure flow with sta-
tionary boundaries governed by a down-channel pressure
gradient dp/dz. In most polymer-processing operations,
the flow is governed either by a relative motion of one or
more boundaries of the flow channel or by the presence
of pressure gradients in the flow domain. In some appli-
cations, a combination of both flow components can be
found such as in the metering zone of screw extruders.
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FIGURE 1 Rectangular flow channel of height h and width w.

Assuming the flow of a Newtonian fluid, the discharge
rate in this example results from a linear superposition
of a drag and a pressure flow. The linear superposition,
however, is invalid for shear-thinning fluids, where the
flow components are interrelated due to the depen-
dency of viscosity on shear rate and the fluid velocities
are more complex than the drag and pressure flow
velocities profiles linearly superimposed. Complexity is
further compounded by the combined effect of shear in
all directions of the screw channel. The literature pro-
vides various numerical analyses of a combined drag
and pressure flow of power-law fluids between parallel
plates. Examples include Rotem and Shinnar,"® Nar-
kis and Ram,!"°! and Roland and Miethlinger.**! The
validity of the linear superposition was examined by
Kroesser and Middleman,*!! who compared the rela-
tive errors between numerical solutions of the com-
bined drag and pressure flow and those resulting from
the superposition principle.

We start the analysis by simplifying the conservation
equations of mass, momentum, and energy. The follow-
ing assumptions are made: (i) the flow is independent of
time, fully developed, and isothermal, (ii) the fluid is
incompressible and wall-adhering, and (iii) gravitational
and inertia forces are omitted. On the basis of these sim-
plifications, the continuity and the energy equations van-
ish, and the problem is described by the momentum
equation in the z direction, which reduces to a nonlinear
partial differential equation with one nonzero velocity
component v, =f(x,y):

Ip iy Jrgy
% ax oy (5)

Note that for pure drag flow, the down-channel pres-
sure gradient is zero (dp/dz=0) and the inhomogeneous
part of the momentum equation vanishes. Considering a
fully developed flow under isothermal conditions allows
both the continuity and the energy equations to be omit-
ted. To express the stress responses in the momentum
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equation, the polymer melt is treated as an inelastic vis-
cous fluid described by the following generalized
Newtonian-fluid constitutive equation:

©=2nD, (6)
D:l(L+LT) L=Vv (7)
2 ’ 2

where the stress tensor 7 is related to the rate-of-deforma-
tion tensor D obtained from the symmetric part of the
velocity-gradient tensor L. The shear-thinning behavior
of the polymer melt is modeled by a power law
(Equation 8), where K is the consistency and n the
power-law exponent. The latter is a measure of the shear-
thinning behavior of the polymer melt; the lower the
power-law exponent, the more shear-thinning the fluid.

n=Kly"". (8)

The magnitude of the shear rate is related to the sec-
ond invariant of the rate-of-deformation tensor. For an
incompressible fluid, it is calculated by:

7| =+/2(D:D). (9)

With these definitions, the viscosity of the polymer
melt is obtained from:

AN GANES
ox ady

The power law has been widely used to approximate
the viscosity behavior of polymer melts in various flow
analyses. A disadvantage of the model is that it is incapa-
ble of describing the Newtonian plateau at low shear
rates, where it predicts an infinite value for the zero-shear
viscosity. This might be problematic for pressure flows,
where the shear rate varies from a zero value on the sym-
metry axis to a maximum value at the wall. A more com-
plex viscosity function that accurately approximates the
rheological behavior of polymer melts in the terminal pla-
teaus, the shear-thinning regime, and the transitions
between them is the Carreau-Yasuda model'*>23!:

n=K (10)

nc—1

1) X+ (7)), (11)

e =M + (1o

where 7, and 7, are the zero-shear and infinite-shear vis-
cosities, respectively, 1 is the characteristic relaxation
time, and n¢ the Carreau-Yasuda power-law index. The
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parameter a defines the width of the transition between
the Newtonian plateau and the shear-thinning region. To
combine the simplicity of the power law and the accuracy
of the Carreau-Yasuda equation, the model parameters
of the latter can be transformed into equivalent power-
law parameters. On a log-log scale, the power law is a
linear function and can be considered as local tangent to
the Carreau-Yasuda model at any given shear rate,
which may be obtained from:

(12)

The local power-law parameters result from the slope
and the intercept of the tangent:

nc—1

(11 —1eo) (nc —1) (Weff)a(l + (”eﬁ’>a) i

n=1+ SacT
Moo+ (110 = 1eo) (1 + (Me;f) )
(13)
K=not (1) (1+ (M) ) " 7™ (14)
Finally, the momentum equation is written as:
dp d [ dv, d [ dv,
Lo (22 ) = ==). 1
Iz ax<”ax>+ay<'7 Iy (15)

Solving Equation (15) in combination with
the corresponding boundary conditions in Table 1 yields
the down-channel velocity profiles of drag and pressure
flows, whose volume flow rates result from:

V:/vz(x,y)dA. (16)

The total viscous dissipation rate per unit down-
channel length is obtained by integrating the specific dis-
sipation rate over the cross-sectional area, which is part
of the energy equation (g, =7 :L):

Qdiss - /qdiss(x’y) dA.

. FIA v,
qdiss”l(ﬁ) +<8—y) .

TABLE 1 Velocity boundary conditions.
Coordinates Drag flow Pressure flow
x y Ve Ve
0 y 0 0
w y 0 0
X 0 0 0
x h Vbz 0
2.2 | Theory of similarity

For convenience, the governing flow equations are trans-
formed into a dimensionless form by using the theory of
similarity. To this end, a set of dimensionless variables is
introduced:

X

52_

= (19)

Y
W= V=

Traditionally, two dimensionless systems have been
used, in which the reference velocities are defined as:

Vref,1 = Vbz = V7 COS(). (20)
4
Vref,2 :V:W. (21)

The first (Equation 20) is commonly applied in the
analysis of combined drag and pressure flows in unrolled
metering channels of single-screw extruders and
describes the down-channel velocity of the moving barrel
surface.”*! The second (Equation 21) is typically
employed in the modeling of pure pressure flows with
stationary boundaries as found in dies, molds, or melt-
filtration systerns.IZSJ In this analysis, we use both defini-
tions of the reference velocity to derive two dimension-
less formulations of the nonlinear boundary value
problem. While the correction factors are then developed
based on the reference system of a combined drag and
pressure flow, we additionally illustrate how the results
can be transformed to the reference system of a pure
pressure flow. The viscosity in Equation (10) is rewrit-
ten to:

n-1
*777}1"*17 h\? v, 2 av, 2
o |) () + (5)

(22)
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The momentum equations to be solved for each refer-
ence system are then:

6H*h2a *avZ+a L ov,
e \w) 2e\" o) T \" oy )

ﬁihzﬁ O\ 9 (v
e \w) 9e\"9z) "oy " oy )

where the dimensionless pressure gradients are
defined by:

hn+1

: (25)
Pz 6KvbZ
R \ p.| hn+1

| = 26

pa=r (26)

Finally, flow and dissipation rates are expressed in
dimensionless form:

V= Wthz 2//Vz ) déEdy (27)
11
1l Y 1= (&.y)ded (28)
V_WhV_ —/./Vz 78 /g
0 0
O b 11
Q WI?S\SIHH = / / nq(&y) dédy (29)
ref 0 0
with:
A A g\ 2 E
o= [(@) (%) + (5) 0

Table 2 summarizes the dimensionless boundary condi-
tions of the nonlinear partial differential Equations (23) and
(24). While exact analytical solutions are available for a
Newtonian fluid with n=1,!?! shear-thinning fluids with
n<1 give rise to a nonlinear boundary value problem,
whose solution requires use of numerical methods. The
results presented in this work were obtained by using the
finite-volume method.

% DRSS ENGINEERING__
. PROFESSIONALS AND SCIENCE

TABLE 2 Dimensionless velocity boundary conditions.
Coordinates Drag flow Pressure flow
4 Vz Ve
0 W 0 0
1 0 0
3 0 0 0
& 1 1 0
2.3 | Correction factors

To consider the effects of the side walls on flow and dissi-
pation rates, we derived correction factors for the non-
Newtonian flows. To this end, we used the dimensionless
model of a combined drag and pressure flow (reference
system 1), in which the reference velocity is defined by
the velocity of the moving barrel surface in Equation (20).
The numerical results were related to exact analytical
solutions available for the simplified case in which the
channel is infinitely wide. For shallow channels with
h/w< 0.1,|3| the flow can be assumed to occur in the y-z
mid plane. In this simplified model, the dependency of
the down-channel velocity v, on the cross-channel coor-
dinate x can be ignored and the problem reduces to a
nonlinear ordinary differential equation. Physically, this
means that the side-edge effects are omitted. Under these
conditions, the dimensionless flow and dissipation rates
as defined in Equations (27) and (29) are equal to one in
the case of a drag flow:
Hya=1, oq=1 (31)
For a pressure flow in the first reference system, in
contrast, the target variables are obtained from the fol-
lowing relationships!*°':

y,= sign(np,z)mmp,zﬁ (32)
3'174rl n nil
Qp 2n+1| Pz (33)

The correction factors were defined as the ratios of
the numerical results obtained for the rectangular duct
and the corresponding exact analytical solutions for the
flow between parallel plates:

HQSlm

fd o 11 V,sim H .

7H—V,d fddlSS

(34)
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fpin ’fp,diss*H . ( )
v.p Qp

In pressure flows viscous dissipation rate is equal to
the pumping power P=VAp. In the dimensionless refer-
ence system of a combined drag and pressure flow, dissi-
pation rate is therefore obtained from:!*®!

Hosim =3y simMpz=3f, My pz=f,Mgp.  (36)
which demonstrates that f, =f, 4. Note that the correc-
tion factor defined in Equation (35) can only be applied
to combined drag and pressure flow. This is due to the
definition of the dimensionless down-channel velocity in
Equation (20), which uses the down-channel velocity of
the moving barrel surface as reference velocity. To enable
the use of the correction factor in the case of pure pres-
sure flow with stationary boundaries, we combined Equa-
tions (25)-(28) and (32) to derive the following
transformation equation:

2" (2n+1)"

= (37)

Pz

<3 -

When using the mean fluid velocity as reference
velocity (Equation 21), the dimensionless flow rate is

TABLE 3 Range of values of 1/w and n.
Quantity Minimum Maximum Increment
h/w 0 1.3 0.1
n 0.2 1.0 0.1
A
(A) 1
—a—n=10
T % —=—n=08
) —a—n=0.6
. 0.8 N —=—n=04
—_— \ #—-n=0.2
o \\.‘
5 06 - N
15} |
8 i
c ¢
2 04 4 -
$ =
t - =
Q » L=
© 024 —
0.0 T T T T
0.0 0.3 0.6 0.9 1.2 1:5
aspect ratio h/w | -
FIGURE 2

ratios and power-law indices.

constant with /7y =1 (Equation 28). Rather than correct-
ing the flow rate, the second reference system hence
requires the dimensionless pressure gradient to be
corrected.

2.4 | Parametric study

The nonlinear boundary value problem defined in Sec-
tion 2.2 has two dimensionless input parameters: (i) the
power-law exponent n and (ii) the channel aspect ratio
h/w. In the case of a drag flow, the dimensionless down-
channel pressure gradient /7, is zero, while in the case
of a pressure flow dimensionless analysis shows that
Iy ~ H},{Z" and f, # f (M), as illustrated in Equation 32.
In other words, the same results are obtained for all other
values of the dimensionless down-channel pressure
gradient.

In the next step, n and h/w were varied to create a set
of 126 physically independent modeling setups. The
ranges of variation are shown in Table 3. The power-law
exponent, for example, was varied between 0.2 and 1.0,
which includes most polymer melts in industrial use.
Moreover, the aspect ratio was varied between 0 and 1.3,
which represents a broad range of equipment. In screw
extrusion, for example, the aspect ratio of conventional
metering channels is in the range of 0 <h/w<0.15. The
screw channel, however, may become boxier when more
advanced screw sections with multiple flights are consid-
ered. These are commonly part of high-performance
screws such as barrier or wave-dispersion screws, where
the aspect ratio of the channel can exceed h/w > 1.0. Sim-
ilar geometrical boundaries can be found in extrusion
dies or molds. Depending on the shape of the product,

B
( )10
—a—n=1.0
i —a—n=08
! —=—n=06
- o —a—n=04
3 —=—n=02
._g_
'-Q—-U 6-
S
© i
8
s 41
©
® 4
8 24
e ——a———a——
0 T . | |
0.0 0.3 0.6 0.9 1.2 15

aspect ratio h/w | -

Drag flow of a power-law fluid through a rectangular duct. Numerical solutions for f; and f, 4, for various channel aspect
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0.6 06
= 04
0.4
0.2
0.2
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h/w=0.1 h/iw=1.0
0.0 n=1.0 =
0.0 0.1 0.2 0.3 0.4 0.5 n=1.0
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1.0 v, I - ( ) V. | =
1.0 < i
0.8
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; 0.4
04 04
SO — 02
0.2
0.2
0.0
h/w=0.1 0.0
0.0 n=04 hiw=1.0
0.0 0.1 0.2 0.3 0.4 0.5 n=0.4
€1 -
©)

h/iw=0.1
n=0.2

hiw = 1.0
n=0.2

0.0 0.1 0.2 0.3 0.4 0.5

G1= 0.0 0.1 0.2 03 0.4 05

FIGURE 3 Contour plots of down-channel velocity profiles 51-

vz(&,w) of a drag flow for h/w=0.1: n=1.0 (A), n=0.4 (B), and

FIGURE 4 Contour plots of down-channel velocity profiles
n=0.2(C).

v (&) of a drag flow for h/w=1.0: n=1.0 (A), n=0.4 (B), and
n=0.2(C).

different aspect ratios are possible. Examples include flat Equations (32) and (33), respectively. For Newtonian
films with h/w < 0.05 and profiles with h/w> 1.0. fluids with n=1, exact analytical solutions are used to

Note that the volume flow and dissipation rates of an  calculate the flow and dissipation rates for channels of
infinitely wide channel (h/w=0) are obtained from finite width.!?!
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3 | NUMERICAL MODELING

Omitting modeling setups with n=1 and h/w=0,
numerical solutions for the dimensionless volume flow
rate /Iy and dimensionless dissipation rate /1, at the
remaining 104 physically independent design points were
calculated by using the finite volume method implemen-
ted in the software package ANSYS Academic Fluent.*’!
For each combination of dimensionless influencing
parameters, we generated and solved a dimensional rep-
resentation of the flow equations and translated the
solutions back into dimensionless space. A fast computa-
tional solving process was enabled by an automatically
driven parameterized setup in terms of geometry, mate-
rial properties, and operating conditions. The simulation
approach was initially validated by comparing numerical
results to exact closed-form analytical solutions for the
Newtonian case. For details on the numerical solving
process, see Roland et al. and Marschik et al.!>*2%!

3.1 | Numerical solutions

Figure 2 plots the correction factors for the flow rate
(a) and the dissipation rate (b) of a pure drag flow
(I, = 0) as functions of the channel aspect ratio for vari-
ous power-law exponents. By definition, f; and [ j
reach unity for h/w =0, which constitutes an isothermal
flow between parallel plates. The influences of the side
walls on flow and dissipation rates become more pro-
nounced the higher the aspect ratio of the channel. While
the former decreases with increasing aspect ratio, the lat-
ter shows the opposite behavior. This result is directly
related to the down-channel velocity profile of the poly-
mer melt, which approaches zero close to the walls due
to wall adhesion.

Figure 3 and Figure 4 illustrate contour plots of the
velocity distribution of a wide channel (Figure 3) and a
narrow channel (Figure 4) for various power-law indices.
When the width is large compared to the height
(h/w=0.1), the channel produces the widely known lin-
ear velocity profile over large parts of the width with
12(£,0) =0 and v,(&,1) =1. For all power-law exponents,
the velocity field is only marginally affected by the side
walls. The significance of the wall effects is increased
when a square duct (h/w=1.0) is considered, where a
nonlinear velocity distribution can be observed even for a
Newtonian fluid. Two effects are observed: First, rather
than being restricted to the regions close to the side walls,
the velocity gradients in &-direction extend to the center
of the channel, thereby affecting the entire velocity distri-
bution. Second, the velocities approach zero over a pro-
nounced region in the lower half of the cross section,

-
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o
o
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o
a
|

correction factors f, and f 45 | -
°
N
1

0.0
0.0 0.3 0.6 0.9 1.2 1.5
aspect ratio h/w | -
FIGURE 5 Pressure flow of a power-law fluid through a

rectangular duct. Solutions for f, =, 4 for various channel aspect
ratios and power-law indices.

which in turn leads to increased velocity gradients in
y-direction close to the moving plate. In the case of a
drag flow, side-wall effects lower the discharge rate and
increase dissipation. For all aspect ratios, wall effects
become more pronounced the more shear-thinning the
fluid.

Figure 5 shows the correction factors for the flow rate
and the dissipation rate of a pure pressure flow as func-
tions of the channel aspect ratio for various power-law
exponents. As in the previous example, the rate-limiting
effect of the side walls increases with increasing aspect
ratio. However, for all power-law indices the flow-rate
reduction is stronger than in the case of a drag flow. Fur-
thermore, as f, =), 4 both flow and dissipation rates
decrease with increasing aspect ratio.

Figures 6 and 7 show contour plots of the down-
channel velocity profiles of a wide channel (Figure 6) and
a narrow channel (Figure 7). While the maximum veloc-
ity in the case of a drag flow is v,,qx = 1, the velocity mag-
nitude in the case of a pressure flow is not restricted. To
allow a qualitative comparison of the contour plots, we
scaled the numerical solutions using v/vy,qc, Where vy
is the maximum velocity in each flow situation.

For a Newtonian fluid, the shallow channel
(h/w=0.1) produces the well-known parabolic velocity
profile over large parts of the width. The maximum veloc-
ity is found in the channel center, while the velocity at
the upper and lower walls is zero due to wall adhesion.
In contrast to Figure 3, the contour plots show pro-
nounced differences even for h/w=0.1. These are caused
by the shear-thinning flow behavior of the polymer melt.
With decreasing power-law exponent, the velocity gradi-
ents in y-direction move to the regions close to the upper
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FIGURE 6 Contour plots of down-channel velocity profiles
Vz(E, W) /Vmax of @ pressure flow for h/w=0.1: n=1.0 (A), n=0.4
(B), and n=0.2 (C).

and lower walls, converting the distribution to a plug-
flow-type profile. In addition, side wall effects become
more pronounced, as indicated by the velocity gradients
in &-direction. This is particularly true when a square
duct (h/w=1.0) is considered, where the side walls affect

Vz/ Vimax I -

1.0

0.0
hiw =1.0
n=1.0

Vz/ Vimax [ -

h/w =1.0

n=04
Vz/vmax l -

00 0.1 02 03 04 05
E|=

FIGURE 7 Contour plots of down-channel velocity profiles
Vz(E,y) /Vmax of a pressure flow for h/w=1.0: n=1.0 (A), n=0.4
(B), and n=0.2 (C).

the entire velocity distribution. To demonstrate the sig-
nificance of the side wall effects, Figure 8 shows the
velocity profiles in the center of the channel v,(0.5,y) for
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Dimensionless down-channel velocity profiles v,(0.5,y) in the center of the cannel for n=0.2: h/w=0.1 (A) and h/w=1.0

(B). Comparison of the exact analytical solution for the flow between parallel plates and the corresponding numerical result with wall
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FIGURE 8
effects.
TABLE 4  Quality measures for fy, f 45, and f,.
Quality measure Unit f, S adiss Ip
R? - 0.999971  0.999960  0.999976
AE, oo - 0.000943  0.005865  0.001076
AE pax - 0.003406  0.028304  0.003962
RE pmean % 0.21 0.30 0.65

a highly shear-thinning fluid with n=0.2 and various
aspect ratios. The plots compare our numerical results for
the flow through a rectangular channel with the exact
analytical solutions for the simplified model, in which
the flow takes place between parallel plates and side wall
effects are omitted (see Hopmann and Michaeli*"). While
the analytical solution is independent of the aspect ratio,
the side walls reduce the velocity magnitudes in the
numerical analysis, which in turn affect the flow and dis-
sipation rates. The velocity differences between the shal-
low channel and the square duct correspond well to the
behavior of the correction factor f, in Figure 5.

4 | REGRESSION ANALYSIS

In the final step, we approximated our numerical results
for the correction factors analytically, which are shown
in Table Al in the Appendix, using symbolic regression
based on genetic programming. The objective was to
develop relationships for f, f4 4 and f, as functions of
the influencing parameters h/w and n. In contrast to clas-
sical regression methods, symbolic regression produces

models in the form of mathematical expressions with-
out pre-defining a specific model structure. To restrict
the search space for candidate models, we included
only basic arithmetic operations as addition, subtrac-
tion, and multiplication in the function set. For regres-
sion analysis, we applied the offspring selection genetic
algorithm (OSGA) implemented in the open-source
software HeuristicLab.!?®! This method optimizes
model quality without taking into account model com-
plexity. Model optimization was driven by a constant
optimization evaluator which calculates Pearson's R? of
a candidate solution according to Equation (41) and opti-
mizes the constants used. For detailed information on
symbolic regression, see Roland et al.*®! The usefulness
of this type of regression analysis has been demonstrated
in the context of various polymer-processing prob-
lems.[24_26’28'31_341

The data set of design points was divided into: (i) a
training set and (ii) a test set, consisting of 81 and 45 ran-
dom design points, respectively. For each correction fac-
tor, we performed 20 runs to generate a set of regression
solutions, whose prediction accuracy were evaluated by
means of the training and test sets. Our regression analy-
sis provided the following analytical relationships for the
correction factors:

Clo%(al +%+azl’l)

as +a4%+ (%)2 +asn +a6%n

fa=1 (38)

bo (%)2 (b1 +£+ bzl’l) (bg + I’l)
(24 byn) (bs+n)

fd,diss =1+ (39)
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FIGURE 10
and analytical solutions according to Equation (40). The dashed

Scatter plot of f,: Comparison between numerical

lines indicate absolute errors.

C()ﬁ
=1 i 40
fp +1+C ﬂ+c n-+c M ( )
Ty T2 3 e+ T resn

where the model coefficients are shown in Table A2 in
the Appendix. To illustrate the accuracy of the equations,
we calculated the volume flow rates and dissipations
according to Equations (34) and (35) for all setups and
compared the results to our numerical solutions. Table 4
summarizes the coefficients of determination, R? (Equa-
tion 41), the mean and the maximum absolute errors,
AEean (Equation 42) and AE . (Equation 43), and the
mean relative error RE .., (Equation 44) for all 126 data
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Scatter plots of f; (A) and f; 4 (B): Comparison between numerical and analytical solutions according to Equations (38)
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FIGURE 11
analytical approximations for f, according to Equations (2), (3), (4),
and (40).

Comparison between numerical results and

points, which confirm the outstanding accuracy of the
approximations. These were calculated by:

Zn: (yl'*j’\i)z

RP=1-= - (41)
> -y
i=1
1 n
AEmean :NZb)z 7yi| (42)
=1
AE g = max (|y; — i) (43)
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Quality measure Unit Jp, new Jpx> €quation (3)
R? - 0.999966 0.998644
AEmean = 0.001139 0.007327
AE pax - 0.003962 0.020462
REmean % 0.34 1.78
1~ iVl
REmean - N ; yl (44)

where y; and y; are the numerical and approximated
results, respectively, and y is the mean of the numerical
solutions. All models achieve a coefficient of determina-
tion of R?>0.999, which demonstrates high prediction
accuracy. In addition, Figure 9 and Figure 10 represent
scatter plots for all correction factors, comparing numeri-
cal and approximated results for all sample points. Note
that the correction factors shown in Equations (38)-(40)
can be further simplified. For each value of the power-
law index, the expressions can be approximated by poly-
nomial functions. A similar approach was presented by
Kopplmayr and Miethlinger.!'!

Finally, we compared the accuracy of our analytical
relationship for f, in predicting the simulated results in
the range of 0 <h/w < 1.0 with the solutions presented by
Rauwendaal (Equation 2), Kopplmayr and Miethlinger
(Equation 3), and White and Huang (Equation 4). To
allow a quantitative comparison of the relationships, we
transformed the correction factor proposed by Képplmayr
and Miethlinger on the basis of Equation (37). This step
was required to account for the different approach taken
by Kopplmayr and Miethlinger. Rather than correcting
the flow rate, the authors developed a correction to the
pressure gradient. Figure 11 and Table 5 illustrate the
increased prediction accuracy of the new parameter.

fo=rk (45)

5 | CONCLUSION

The analytical correction factors developed in this work
can be used to consider the effects of the side walls in
predicting the volume flow rate and the viscous dissipa-
tion of drag and pressure flows in rectangular ducts. They
were derived from a large number of numerical results
for a fully developed flow of an incompressible power-
law fluid under isothermal conditions and designed to
correct exact analytical solutions available for the simpli-
fied case in which the polymer melt is conveyed between
two parallel plates.®! Without resorting to numerical

TABLE 5
accuracies: our f, versus f, x and f, .

£ €quation (4) Comparison of prediction

0.966814
0.029969
0.163920
8.687

methods, the proposed relationships, whose applicability
is restricted to ducts with 0<h/w<1.3 and polymer
melts with 0.2 <n <1.0, allow fast computation of realis-
tic results for the actual flow situation. Note that while
pressure flows through ducts with h/w> 1.0 can be mod-
eled by taking the inverse of the correction factors, simi-
lar assumption is invalid for drag flows.

A critical aspect in the application of the correction
factors for the viscous dissipation rate is the isothermal
assumption applied in the mathematical derivation,
which restricts the validity of the theory in practical use.
A convenient method that enables the use of the correc-
tion factors in non-isothermal analyses is based on so-
called lumped-parameter models. This approach, which
has been applied in the modeling of extruder screws!>>-°!
and dies,"”! divides the channel into short segments,
within which the temperature is assumed to be uniform,
thereby allowing the use of isothermal models. Rather
than resolving spatial parameter variations over the
channel cross section, a lumped form of the energy equa-
tion is solved to calculate the temperature change along
the channel. For each segment, thermodynamic and rhe-
ological material properties are evaluated based on a
mean cross-sectional temperature. The correction factors
presented here can be employed to include the influence
of the side walls in the computation of local flow and dis-
sipation rates. The use of the correction factors, however,
is not limited to straight flow channels with constant
cross sections; when employed in combination with net-
work theory, they can also be applied to model multidi-
mensional flows in geometries with changing cross
sections. In this case, the flow domain is discretized into
both down- and cross-channel segments. The usefulness
of network theory in the flow analysis of extruders and
dies has been demonstrated in several studies.!**"~*°!

NOMENCLATURE

a Carreau-Yasuda parameter
a;j model coefficients of f;

A cross-sectional area

AE maximum absolute error

mean absolute error
by model coefficients of f; ;i
Cij model coefficients of f,
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D rate-of-deformation tensor

fa drag flow correction factor for flow rate

Sar drag flow correction factor for flow rate
(Rauwendaal)

S ddiss drag flow correction factor for dissipation rate

I pressure flow correction factor for flow rate

fox pressure flow correction factor for flow rate

(Kopplmayr and Miethlinger)

Jor pressure flow correction factor for flow rate
(Rauwendaal)

Jow pressure flow correction factor for flow rate
(White and Huang)

 p.diss correction factor for dissipation rate (pres-
sure flow)

h channel depth

K consistency

n power-law exponent

ne Carreau-Yasuda power-law exponent

D pressure

2 pressure gradient in z-direction

Qdiss dissipation rate per unit volume

Quiss dissipation rate per unit length

R? coefficient of correlation

RE, .., mean relative error

Vi velocities

Vbg down-channel plate velocity

Vref reference velocity

v mean velocity

v velocity vector

1% volume flow rate

w channel width

X cross-channel coordinate

y up-channel coordinate

Vi numerical result

Vi approximated solution

y mean value of numerical results

Z down-channel coordinate

4 shear rate

Voff effective shear rate

n viscosity

ne viscosity (Carreau-Yasuda model)

o zero shear viscosity

Neo infinite shear viscosity

n* dimensionless viscosity

Vi dimensionless velocities

A characteristic relaxation time

3 dimensionless cross-channel direction

1,, dimensionless pressure gradient in down-
channel direction (system 1)

11 bz dimensionless pressure gradient in down-
channel direction (system 2)

o dimensionless specific dissipation rate

- 13
D C NS ENGINEERING__
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I1g dimensionless dissipation rate

110 5im dimensionless dissipation rate (simulated)
g dimensionless dissipation rate (drag flow)
Iop dimensionless dissipation rate (pressure flow)
Iy dimensionless volume flow rate (system 1)
Iy dimensionless volume flow rate (system 2)
Iy sim dimensionless volume flow rate (simulated)
Iy 4 dimensionless drag flow rate

Iy, dimensionless pressure flow rate

Tjj stresses

T stress tensor

7 screw pitch angle;

W dimensionless up-channel direction
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APPENDIX A

TABLE Al

n

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
1

0.9
0.8
0.7
0.6

Numerical solutions for f, fq 4> and f,, for all sample points.

h/w
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.5
0.5
0.5
0.5
0.5

Ja
0.946
0.944
0.941
0.938
0.933
0.927
0.919
0.905
0.882
0.891
0.887
0.882
0.875
0.866
0.854
0.837
0.811
0.764
0.837
0.831
0.823
0.813
0.799
0.782
0.757
0.718
0.651
0.783
0.774
0.764
0.751
0.733
0.711
0.678
0.630
0.550
0.729
0.719
0.706
0.690
0.670

fd,diss
1.369
1.297
1.240
1.193
1.156
1.125
1.099
1.077
1.057
1.822
1.652
1.519
1.413
1.330
1.262
1.206
1.159
1.118
2.289
2.016
1.804
1.638
1.506
1.400
1.314
1.241
1.177
2.757
2.381
2.089
1.862
1.682
1.538
1.420
1.321
1.232
3.222
2.743
2.372
2.083
1.855

Io

0.938
0.934
0.928
0.921
0.912
0.898
0.875
0.835
0.747
0.875
0.867
0.857
0.843
0.825
0.799
0.757
0.687
0.552
0.812
0.800
0.785
0.766
0.739
0.702
0.645
0.555
0.399
0.749
0.733
0.714
0.689
0.656
0.610
0.543
0.442
0.285
0.687
0.668
0.645
0.616
0.577

n

0.5
0.4
0.3
0.2
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
1

h/w
0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

e T e e T

1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.2

POLYMER
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AND SCIENCE

Ja

0.524
0.482
0.426
0.347
0.581
0.567
0.551
0.531
0.506
0.474
0.433
0.378
0.306
0.538
0.524
0.507
0.487
0.462
0.431
0.391
0.339
0.273
0.499
0.485
0.468
0.448
0.424
0.393
0.355
0.307
0.247
0.464
0.450
0.433
0.414
0.390
0.361
0.325
0.280
0.225
0.432

fd,diss
1.921
1.707
1.525
1.362
4.579
3.791
3.184
2.710
2336
2.036
1.790
1.581
1.396
5.012
4.124
3.438
2.903
2.482
2.143
1.866
1.633
1.426
5.435
4.446
3.683
3.089
2.620
2.245
1.938
1.680
1453
5.848
4.759
3.920
3.266
2.752
2.340
2.004
1.723
1.478
6.249

ILEY_L_*®

Io

0.386
0.314
0.220
0.105
0.516
0.492
0.463
0.429
0.385
0.331
0.262
0.175
0.076
0.467
0.442
0.414
0.379
0.336
0.284
0.218
0.140
0.056
0.422
0.398
0.370
0.335
0.294
0.244
0.183
0.112
0.041
0.382
0.358
0.330
0.297
0.258
0.210
0.154
0.091
0.031
0.346

(Continues)
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TABLE A1 (Continued)

n h/w Sa S adiss fp n h/w Ja S a.diss fp
0.5 0.5 0.643 1.671 0.526 0.9 1.2 0.418 5.062 0.323
0.4 0.5 0.605 1.522 0.454 0.8 1.2 0.402 4.148 0.296
0.3 0.5 0.551 1.395 0.351 0.7 1.2 0.383 3.437 0.264
0.2 0.5 0.466 1.281 0.204 0.6 1.2 0.360 2.877 0.226
1 0.6 0.677 3.682 0.626 0.5 1.2 0.333 2.430 0.182
0.9 0.6 0.665 3.100 0.605 0.4 1.2 0.299 2.067 0.130
0.8 0.6 0.651 2.650 0.580 0.3 1.2 0.258 1.764 0.074
0.7 0.6 0.633 2.299 0.547 0.2 1.2 0.207 1.500 0.023
0.6 0.6 0.610 2.022 0.506 1 1.3 0.404 6.641 0.315
0.5 0.6 0.580 1.800 0.451 0.9 1.3 0.390 5.356 0.292
0.4 0.6 0.540 1.618 0.378 0.8 1.3 0.375 4.368 0.266
0.3 0.6 0.483 1.463 0.278 0.7 1.3 0.356 3.600 0.235
0.2 0.6 0.399 1.324 0.146 0.6 1.3 0.334 2.997 0.200
1 0.7 0.628 4.135 0.569 0.5 1.3 0.308 2.516 0.158
0.9 0.7 0.615 3.450 0.546 0.4 1.3 0.277 2.125 0.111
0.8 0.7 0.599 2.921 0.519 0.3 1.3 0.238 1.801 0.060
0.7 0.7 0.579 2.508 0.485 0.2 1.3 0.192 1.521 0.017
0.6 0.7 0.555 2.183 0.442

TABLE A2 Model coefficients of correction factors f, fy giss»

and f,.
Qoo 0.748395 boo 0.087350 Coo 18.382846
Qo1 0.647381 b1 —1.852453 Co1 —25.746285
Lo 73 1.236903 bz —8.176982 Coz 15.179544
Qo3 0.050597 bos 2.930729 Co3 —2.935767
Aoy 0.211290 boy 0.050238 Coa —8.651836
Qos 2.690815 bos —1.666054 Cos 26.896086
Qo 0.372779 Co6 0.822919
Co7 0.131104
Cog 0.579553
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